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Crameér—Rao Bounds for Parametric Shape Estimation
In Inverse Problems
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Abstract—We address the problem of computing fundamental basis for, e.g., an efficient maximum likelihood estimation al-
performance bounds for estimation of object boundaries from gorithm. Once a suitable parametric model has been identified,
noisy measurements in inverse problems, when the boundaries fundamental bounds on the performance of shape estimation

are parameterized by a finite number of unknown variables. Our lgorith . inciple be derived b i th
model applies to multiple unknown objects, each with its own aigorthms can In principle be derive y computng the

unknown gray level, or color, and boundary parameterization, Cramér—Rao lower bound (CRB).

on an arbitrary known background. While such fundamental Cramér—Rao lower bounds are widely used in problems
bounds on the performance of shape estimation algorithms can in where the exact minimum-mean-square error of an estimator is
principle be derived from the Cramér—Rao lower bounds, very few  gitficy it to evaluate. The CRB provides an unbeatable perfor-
results have been reported due to the difficulty of computing the . - .

derivatives of a functional with respect to shape deformation. In ma_nce I'm't for any unbiased est_lm_ator, and hence Can_be ‘Fed
this paper, we provide a genera| formula for Computing Cramér— to |nVeSt|gate the fundamental limits of parameter estimation
Rao lower bounds in inverse problems where the observations problems, or as a baseline for assessing the performance
are related to the object by a general linear transform, followed of a specific estimator [4]. Furthermore, under fairly mild
by a possibly nonlinear and noisy measurement system. AS an yaqlarity conditions, the CRB is asymptotically achieved by

illustration, we derive explicit formulas for computed tomography, g - .
Fourier imaging, and deconvolution problems. The bounds reveal the maximum likelihood estimator (MLE). Hence, the CRB

that highly accurate parametric reconstructions are possible in €an also serve as a predictor of the high-SNR or large sample
these examples, using severely limited and noisy data. performance of the MLE or other asymptotically efficient

Index Terms—Cramér—Rao bounds, deconvolution, domain estimators. Finally, the CRB can be used f(?r optimum deSiQn
derivative, Fourier imaging, global confidence region, linear Of the measurement system, e.g., by selecting sampling points
inverse problems, parametric shape estimation, performance to minimize a functional of the CRB matrix, such as its trace
analysis, Radon transform, tomography. or determinant [5].

While CRB'’s are available for estimation of signal parame-
ters such as target location [6]—-[9], direction-of-arrival (DOA)
o . . [5], [10]-[12], and size and orientation of a scatterer [9], [13],
T HE PROBLEM of estimating object boundaries fronj;4] only recently has this type of analysis been conducted for

noisy measurements is encountered in applications sycftimation of target shapes [15], [16]. In the paper by Hero
as computed tomography (CT), image deconvolution, synthegig 51, [15], the boundary of a star-shaped object param-
aperture radar (SAR), and nonlinear inverse scattering. If thgsrized using B-splines, and CRB's for the B-spline coeffi-
boundary is represented mathematically as a curijrthere  gients are computed for several shapes in a magnetic resonance
is generally insufficient information to recover details of thi%aging problem. However, these results are applicable only to
boundary from limited measurements. This situation is typicé‘{ar-shaped objects.
of an ill-posed image reconstruction problem. _ For nonlinear inverse scattering problems, Ye, Bresler and
~ In'such problems, the boundary is often parameterized by ylin [16] employed the domain derivative technique [17] to
finite number of unknown variables. Such a parametric form\éompute the CRB for arbitrarily shaped objects. The computa-
lation (for instance using B-splines [1] or Fourier descriptofon of the domain derivatives for nonlinear inverse problems is
[2], [3]) is a first step toward constructing a stable boundarysyally problem-dependent and does not admit a general for-
estimation algorithm. This type of parameterization imposegyla. Hence it must be treated separately for each problem.
smoothness on the reconstructed boundary and provides i@ focus of the present paper is on linear inverse problems,
for which explicit formulae can be given. Linear inverse prob-
lems provide arich class of models, and underlie most (although
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measurement processes we consider may introduce further nehereh: R? x Q — R is a known kernel, anf a subset oR?.
linearity, so that the dependence of measurements on the obj&etassume that andh satisfy appropriate conditions so that
itself is no longer linear. The techniques and results developisdvell defined. For example, one such set of conditions is that
in this paper therefore have broad applicability in imaging prolf-is bounded, and(-, -, s, t) is absolutely integrable for any
lems. (s, t) € Q.
The CRB'’s computed using the techniques of this paper canSupposey(s, t) is sampled at a finite numbe¥/ of posi-
also be used to compute a global uncertainty region around ttes {s,,, t,,}}_,. The estimation problem we consider is
boundary [18], providing an easily interpreted geometric dise estimate the object boundaly from noisy measurements
play of boundary uncertainty. A related idea has been applied{t,, }_, of the sampleg,, = g(sm, tm), m = 1, ..., M.
tomographic reconstruction by Hansehal. [19]. The uncer- Our goal is to derive fundamental bounds on the estimation ac-
tainty regions in [19] were however constructed using Monteuracy ofI" for specified statistics of the measurement noise.
Carlo simulations for a particular estimator. Hence, they are lifixamples of the linear operator (2) are as follows.
ited to that estimator, and are time-consuming to construct. In
contrast, our global confidence region can be easily and quicily Computed Tomography
constructed using the CRB covariance matrix, even before theConsider tomographic reconstruction from line-integral pro-
construction of an estimator is attempted. jections or the samples of the 2-D Radon transform. The Radon
This paper is organized as follows. Section Il introduces thgansformg of a 2-D functionf, is defined as the collection of
basic shape estimation problem. In Section I, we briefly revieyne integrals off along lines, indexed by these lines’ angle
the statistical framework of parametric boundary estimatioftom thez-axis and at distancefrom the origin:
and discuss the significance of the Cramér—Rao lower bound. — e
Section IV introduces the domain derivative, which allows thg( 1) — / / f(@, y)é(x cos(s) + ysin(s) —t) du dy,
computation of the CRB’s in shape estimation problems. Sec- —o00 J —o0
tion V derives the domain derivatives for CT, Fourier imaging, —0<t<0, 0<s<m, 3)
and deconvolution. The CRB is then computed for several illus-

trative examples in Section VI. Section VIl extends our theory herei(% 'St tge. D|raﬁ ij?uls(;a.z'ghe':functloﬁ ISI a;tsumef(fj_ t_o t
an object composed of multiple domains. Conclusions are p -Suﬁ 5 g I(: )'S. well- eflne [ ]'. orer>]<'a|r”]np €1 .'Sf.Sl:j icien
sented in Section VIII. that the 2-D Fourier transform gf exist, which is satisfied if

is absolutely integrable. In turn, a sufficient condition for this

in our setup, is thalfs be bounded, sufficiently smooth, and

supported on a bounded region, which is satisfied in all practical
Consider a real-valued imag¢ consisting of a con- applications.

stant-valued 2-D object and a known background density This reconstruction problem (and several variations thereof

Il. SHAPE ESTIMATION PROBLEM

falz, y): [20]) is of interest in numerous applications [21], of which
medical x-ray CT is the best known. In medicine, the problem
Fz, y) = {fl: (z,y) €D ) of shape estimation of constant density objects arises in the
folz, y), (z,y) € R?\D. imaging of blood vessels or heart chambers filled with contrast

) _ ) agents, or in emission tomography of regions marked by
The intensityf, and regionD are unknown, whereag(z, y)  radioactive tracers. It also arises in nondestructive evaluation
is known for all(z, y) € R?. This scenario models an object ofy metal castings for the presence of cracks or bubbles, or
constant but unknown intensity and unknown shape, partly Q& nitoring nuclear reactor cores. In geophysics it may be an
cluding (or replacing) &nownbackground. This situation arisesapnropriate model for estimating the shape of an underground
in applications requiring the imaging of localized changes Q&geryoir. The known backgrourfd(z, y) in these applications
anomalies in a reference object, or the imaging of objects oRfy pe obtained from baseline reference scans in medicine,

homogeneous background. Particular imaging scenarios saiisqy models in nondestructive evaluation. etc.
fying these assumptions will be discussed later in the context of

specific imaging modalities. Small (and often unavoidable) u. Fourier Imaging
structured deviations of the assumed backgrofsrfdom its ac- The second problem we consider is Fourier imaging [22],

:.U?.I velllues will be aC(;omrgoldated bydtg_?_ uncertainties in tthe S%ﬁ ]. This problem arises in applications such as synthetic aper-
istical measurement model (e.g., additive measurement noi radar (SAR) [24], [25], diffraction tomography (DT) [6].

described in the sequel. The object is thus completely deﬁn%dagnetic resonance imaging (MRI) [26], and other image for-

by its image valugy and its boun(_jarij = 0D.The suppor.t Setdnation modalities [22]. In Fourier imaging, measurements are
D need not be a connected region, so the formulation inclu ESmples of the 2-D Fourier transform:

the case of multiple objects.
delﬁ(ra]'gé Eny be a general linear integral transformationfof o(s,8) = / / f(:my)e,j%(sﬂty) dody, (s,t) € R2.
4

, 1) = (7.h(7.77td)d.7 7f€Q - ey H
9(s, ) /_oo /_oof(x Y.y, s,t) do dy (8, 8) The same sufficient conditions as in the computed tomography
(2) problem are applicable to the Fourier imaging problem too. We
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note that the Fourier imaging formulation often arises as a lineshere¢ = (41, ..., ¢x) € RE is an unknown parameter
approximation to inverse wave scattering problems [27]. Okector, andl C R an interval. Because object boundaries cor-
jects of interest in these applications are often essentially imespond to closed contourkjs a closed interval, anfi(u; ¢)
penetrable (e.g., the conductive metal shell of an aircraft, or tageriodic function of:, with period equal to the lengtli|. In
surface of the earth in SAR) or fully penetrable (e.g., “sounghrticular, we use the series expansion model

soft” in the case of permittivity profile inversion [27]). In ei-

ther case, the boundary conditions on the objects are such that C(u; @) =[a(u; @), ylu; $)]"

the constant-valued object model is an accurate description. As K

in the tomography problem, the known backgroufdz, y) =Y ¢ibi(u), wel, (8)
=1

in these applications may be obtained from baseline reference

scans. For example, in the case of transient change detecmrebi(u) € R2 is theith basis function. Parameterizations
(response to a stimulus in functional MRI, or the appearanggch as Fourier descriptors (FD) [2], [3], B-splines [1] and
of a target in SAR) an accurate image of the static backgroupgyelet descriptors [28], [29] are special cases of this model
f2(z, y) may be easily obtained, because of the essentially g have been widely used for shape representation.
limited time available for data acquisition. In other applications, Throughout the paper, we assume that the bountlais/a
such as imaging on a sky background, a constant backgrounghanifold inR?2, or of classC? in order to apply in Section IV
may be assumed. standard results about the domain derivative, which require this
condition.
In practice, this regularity condition is not too restrictive and

The last problem we consider is deconvolution—a ubiguimplies that the boundary is sufficiently smooth without any
tous problem in all areas of science and engineering. Suppeseps and crossings. Equivalently, a parameterized-manifold
the imagef(z, y) of (1) is blurred with a shift-invariant point ¢ (), « € I should be continuously differentiable with respect
spread functio(z, y). The noiseless blurred imagér, y) is  tow, its inverse should be continuous to avoid any crossing, and
given by @(u)? + y(u)? # 0 for all u € I to prevent any cusps, where
#(u) andy(u) denote the derivatives of theandy components

C. Deconvolution

9(s, t) =(h :o*f)gf’ t) of ¢{(u) with respect tou. These regularity conditions are in
- / / flz, y)h(s — =, t — y) dz dy, a(_jdition_to the earlier condition thg(«), v € I be periodic
J—ooJ—o0 with period|I|.
(s,t) € Ry C R2 (5) Under the series expansion model (8), in order to sat-
) _ ) isfy these regularity conditions, the basis functidsn:
wheresx is the 2-D convolution, an®; denotes the image do-; _, R2, i = 1, ..., K should be continuously differentiable.

main, respectively. For the convolutigrts, ¢) to be well de- The conditions for avoiding intersecting boundaries and cusp
fined, it is sufficient that one of and’ be bounded and the are however, more difficult to impose for each basis function
other absolutely integrable, whichis satisfied in all practical ag;; pecause these are global properties contributed by the linear
plications. For instance, if the point spread function is Gaussighmbination of all basis functions. Therefore, we will assume

with width parameter, then (5) takes the form that the parameters,, i = 1, ..., K are chosen such that
00 poo g the resultant boundary = {{(u; ¢), v € I} does not have
g(s, 1) = / / ) crossings and cusps.

e (= 02 (1 ) dady. (6) B. Cramér—Rao Inequality

Deconvolution is a key problem in imaging systems and The measurementg = {Ym} = are a noisy version of
seismic inversion [22]. As in the other imaging problem = {9m }7—.. The measurement model is specified by a con-
the known backgroung(z, %) in these applications may peditional probability density function (pdf)y ¢ (y|g), wherey
obtained from baseline reference scans. For example, in fifR0tes a particular realization of the random vegtoiNote
case of change detection in an optical surveillance problem, &t this formulation includes the case where the observation
accurate image of the static backgroyadr, y) may be easily involves a nonlinear transformation gf such as in x-ray or

obtained from the previous scenes. positron emission tomography problems where the measure-
menty,, is Poisson distributed with rate,, = Ar exp(—gm).
Il. STATISTICAL FRAMEWORK FOR PARAMETRIC We denote thenth noise-free samplg(sy,, tn) bY gm =
SHAPE ESTIMATION gm(0), where
A. Parametric Boundary Model 0=1[¢1 - ox fi]" (9)

Since the estimation df from a finite number of noisy sam- 211 estimation of an “optimum” model ordé can be done using model
ples{y,,}M_, is generally an ill-posed inverse problem, a possrder selection criteria such as MDL [30], as illustrated in [31]. Because an
sible remedy is to represent the bound&ms a known function unknown model order will increase the estimation error, the CRB’s on the

. . . boundary shape still provide a lower bound on the pointwise error in estimation
with a finite number of unknown parameters: of the boundary even whel§ is unknown. The detailed analysis of the effects

of unknownk is, however, outside the scope of this paper, and we will assume
T'={{(u; ¢), u € I}, (7) that the model ordek is knowna priori.
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in order to show explicitly the dependence on the unknown pahereas for the complex circular Gaussian noise with mean zero
rameter vectot. In view of the parametric representation (7)nd variance?|Y,, — g..|*> = 202, we have
and (8) of the object, and the image formation model 25

completely determined by the unknown veaand the known (l)i s = i 1 po[(29m0)\" 99m(8)

backgroundf,, and the statistics df can be described by 6)i3 = = a2, ’ 08; a0; |’
Pyie(y18) = pyiao) (¥12(9)). (10) hi=L.. K4l (14)

which we denote, for brevity, by(y|8). whereRe[-] denotes the real part and the superscrigenotes

Given datay and its statistical description by(y|§), the the conjugation. . . .
shape reconstruction problem has been reduced to a statisticiVhile (13) and (14) appear simple, techniques for computing
parameter estimation problem. As is well-known, the variandge derivatives(dg,, (9)/96;} for models of the form (2) and
of an unbiased estimator & is subject to a fundamental ), (8)_have not be_en studied m'Fhe I|t_erature, except for special
limit—the Cramér—Rao lower bound (CRB). Moreover, und&f®S€s in @ magnetic resonance imaging problem [9], [14], [15].
appropriate regularity conditions, the maximum likelihood est}Vé now develop a general technique to compute those quantities
mator (MLE) achieves the CRB asymptotically [4]. Hence, thi8 & generic linear inverse problem.

CRB is not only a lower bound, but is also useful for predictinB
the large sample or high SNR performance of the MLE, or
other asymptotically efficient estimators. The accuracy of the In practice, becausg{u; 9) describes the geometry of an ob-
shape estimate can in turn be assessed from the accuracy of@fk One is interested in assessing the quality of estimates of
parameter estimate. In particular, one can then construct glog: ) in easily interpreted geometric terms. Rather than the
confidence regions for the object boundary [18]. Here, we firgtiality of estimates o itself, what is needed is a global quality
concentrate on the derivation of a procedure for computifgeasure for the entire boundafg(u; 6), Vu € I'}t. The CRB

the CRB. According to the Cramér—Rao inequality, subject fge computed by the techniques of this paper can be used, as
some regularity conditions on the conditional pelfs, the described in[18], to construct small-sigibal confidence re-

(K +1) x (K + 1) covariance matrix of the estimation errodionsin the asymptotic regime where _the estimate is unbiased,
6 — 6 for the unknown parametéris bounded from below as efficient, and Gaussian. Bounds are given in [18] for the proba-

. From CRB'’s to Global Confidence Regions

[4] bility that the entire boundary estimate lies in the global confi-
R / dence region. We illustrate the construction of such confidence
Cov (0 — 0) > Cy 2 ([Io)*l, (11) regions in the numerical examples in Sections VI and VII.
for any unbiasecestimated of §. Here, the matrix inequality IV. DOMAIN DERIVATIVE

notationA > B indicates that! — I is positive semidefinite,  compining the object model (1) and the noise-free measure-
with A andB being Hermitian positive semidefinite matrices. I, ot equation (2) yields

(11), the Fisher information matrikg, is the(K +1) x (K +1)

matrix o500 =i [ bayos ydady+ [ aloy)
T Jp JrR2\D
lo=F [VB Inp(y|#) Ve lnp(YW)] 12) h(m, y, s, t)d dy, (s,t) € Q. (15)

whereln p(y|0) is the log-likelihood function, an¥, denotes

gradient with respect t. Equation (15) then defines a mappidg {D} — {g} from

the set of domain§D}, or equivalently, boundaried™}, to the
C. Fisher Information Matrix space of functiongg}. This mapping admits the general form:

For any pdfp(y|@) for which the Fisher information matrix - _ _
is WeII-defined,(it io?lows from the chain rule that the entries of 7 ~ J(D) = fi /D Z1dS + /RQ\D ZpdS =c+ /D 2dS,
lg in (12) are (possibly nonlinear) functions @f,(8) and the (16)
derivativesdg,,(0))/00;,i =1, ..., K+1,m=1,..., M.

For examples, if the noisy measureméfyt is a Gaussian wheredS = dxdy, Z1, Z,, andZ = f1Z; — Z, are known
random variable with meag,, (8) and variances?,, under the functions onR?, D is the unknown object support, and=
additional assumption of independence of measurements at gjfz Z» dS is a function independent @b.
ferent locations, théi, j)th element of the Fisher information Given our parameterization of the boundary, we can rewrite

matrix is given by (16) to display explicitly the dependence én
M
_ 1 Jgm(0) Ogm(0) . . g(0) = J[D(0)] = c + / ZdS. (17)
(lo)i,; = E EG—QLTHJ h,j=1,...,K+1, Do)

m=1
(13) Our goal is compute the derivativeg(#)/06;. The idea is to
_ _ proceed using a two-step approach akin to the chain rule: i) find
3The measuremend(s,.. t,,) is also a function ofknown background

f2(z, y). However, this dependence is not explicitly expressed sinte, v) the chan_ge ((_j_eformaf[ion) @(0) pdeU_Ced by an infinitesimal
is assumed known. change ird;; ii) then find the change nfD Z dS produced by
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the corresponding infinitesimal deformation bf BecauseD Using (19), (21), and (23), we have
is represented by its boundalry#) in our parameterization, it
is more convenient to consider the corresponding deformatio@% :/Af(u)h[:c(u)./ Y1), Sy b ]bT (W) (1) 7 (1) du,
of I'(9). i 1 o

The first step is easy. In view of (7)-(9), a changeljrto (24)
6; + t produces the deformed boundary Af(u) e f1— folz(w),y(u)], (25)

Py =T +tb; = {zlz = ((u) + thi(u), ue I},  (18) Where

M
whereb; is theith basis function in the linear model (8) and 7(u) = Vi(u)? + g(u)? =
((u) is the parametric representation of boundary given by (8).

=1
The second step thus requires to compute the change.i . )
" Z dS produced by deformation df to T, for infinitesimal b’i?“) denotes the derivative df; with respect tou, and|| - |

t. This is known as theomain derivativeor the shape deriva- denotes the Eu_clid_ean rl;orm. In (24), the outer-normal vactor
tive, and has been studied extensively in structural mechanf§?(1): ¥(u)) is given by

(26)

[32]. Drawing upon these results we prove in Appendix A the M ) ) T
following result: ) () > b [bi"(U% —bf(u)]

Proposition 1: Let D = D(#) be a domain with boundary n(u) = — [ i } == / (27)
I" of classC. Suppose the boundalyis deformed as in (18). 7(u) L ~i(u) % 8,5, (u)
Then, the domain function (17) is shape differentiable with re- i=1
spect to boundary deformatidr, with domain derivative with and so
respect to parameté:

M . .
5 VIR
o, = 07(D; bi) bin = : (28)

M .
AT
=1

=7

—~

u) (b} 1) (u)7(u) du, i=1,..., K, (19)

whereb? andb! denote the: andy components ob;, respec-

where Z(u) 2 Z[C(u)], m(u) = #(w)? + §(u)? where tively. The derivative with respect 1 (=f1) is given by
#(u) and g(u) are the derivatives of the components of 9gm(0)  Ogm(0)

¢(u) = [#(u), y(u)]", andn denotes the outer-normal vector 5, —— = ~ 52— = | h(z, y, sm, tm) dudy.  (29)
of I. e h P

The derivative with respect #y 1 (=f1) is even simpler, of ~ An important though somewhat expected observation that
course, because it does not involve the domain derivative: follows from (24), is the following. Although the measurements
Ym, and in fact the existence of the transforms that define them,
often depend on all of the backgrourfg, the Fisher informa-
tion matrix only depends on the values of the backgrogind
on the boundary' of the domainD.

Using (19) [and (20) iff, needs to be estimated] we are ready
to compute the CRB's for the examples mentioned earlier. Wle Computed Tomography

Jg Jg /
= — [ z,dS. 20
Do Ofs 4 (20)

begin by deriving an explicit expression fdy/90;. Combining (2), (3), and (24) it follows that
V. DOMAIN DERIVATIVES FORLINEAR INVERSE PROBLEMS O9m (8) - /6(F (u))G(u) du (30)
801 T m

A. General Expressions

Combining (1) and (2) and separating the contribution of t&neres(-) denotes the Dirac impulse and

domainD from the integral in (2), we obtain Foo (1) = (1) cos(sm) + (1) sin(sm) — tm (31)

=A b7 (u)n .
I (®) = cloms ) + [ 2oty 2, 9) o dy ol =B bfun(urt %2
A JD Note that in (30) if the equatioft,,,(v) = 0 has no solution
= J(D)(8m; tm), 1<m <M, (21) on 1, the integral is trivially zero. However, whef,, (u) =
0 does have a solution, multiple such solutions may exist, all
where contributing to the integral. Lemma 1 provides the formula for

the integral accounting for all these contributions.
($mstm) = / Fo (. )W, s S, ) drdy  (22) Lemma 1: Let functionsF": I — R be continuously differ-
JRr2 entiable and7: I — R be continuous, whergé C R. Suppose
Z(Smytm,x,y) =(fr — fo(z,y))h(z,y, Sm, tm). (23) furthermoreF'(u) hasL isolated rootay; € I,1 =1,..., L
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such thatF'(u;) = 0 andF’(w;) # 0. Then, if ' does not have y
roots on boundary points df or if I is a closed interval anfl
periodic onl with period equal to its lengt{Y|, we have

./,6<F<u>>G<u>du=i O i) | x

< [ (u)

o
whereé(-) is the Dirac delta functiony” denotes the derivative ( X(UT), y(U) /l.*.’( X(Ur;)J y(uy)
of F, and| - | is the absolute value. . t
Proof. See Appendix B. O

Note that if any of the roots of’(u) is multiple, then
F'(u1) = 0 and (33) is not defined. An example of this case
will be presented in Section VI-A, demonstrating that in our
application of the lemma this case corresponds to violation of
the regularity conditions of the CRB.

Now we apply Lemma 1 to (30). Lét(rn) denote the number
of solutions ofF,,,(u) = 0, anduj* € I denote thdth such

solution, i.e., [by (31)] whereAf(u) = fi — fa2[z(u), y(u)] andr andb? n are given

m m . by (26) and (28), respectively. By (29), the derivative with re-
(0" 8)cos(sm) +y(uf's @)sin(sm) ~ tm = 0. 34)  gpectiop, is given by

Fig. 1. Set of{((u), y(ur))}E™ of line-boundary intersections for a
tomography problem.

Referring to Fig. 1, we identify;;* € I as thelth intersection Agm(0)  9g,,(0)
of the boundanf™ with the line indexed by(s,,, t,,). Using 00541 - ofi
Lemma 1 and (34), we have

:/ eI (smettny) g dy. (40)
D

which is the Fourier transform of the indicator function.of

L(m) T () m m evaluated att,,, sm).
0 nz A Jme mm . . . . .
9 Z | cog S“z “z) 4)— Srllr(lrzbé ))T(EZ"?M ) The following alternative expression, involving a 1-D instead
m) m )Yt of a an area integral, is obtained using Green'’s theorem [33]:
=1 , K, (35)
/ e~ 12T (smT+tmy) 4. dy
where D
z(u) )
AF(u) = fi = fola(ud™), y(ui™). (36) =1 / ( / L) dz) () (u) du
I 0
By (29), the derivative with respect iy is given by y(u)
-1 e 2 (me(W)ttm2) g0 ) (w7 (u) du.
29,1(0) _ 29,1(0) ), (/0 ()7 (v)
00511 df1 (42)

= /D 8(w cos(sm) + ysin(sm) = tm) dedy, (37)  Thig expression is particularly convenient when the boundary
is parameterized by (8). Even when it can not be evaluated in

which is a line integral projection of the indicator function otlosed form, its numerical evaluation requires, in general, less

the domainD. Referring again to Fig. 1, this quantity equals theomputation for given accuracy than that for the area integral in

sum of the lengths of the chords formed by the intersection of t{#0).

line parameterized by, t,,) with the domainD. The lengths

can be computed by solving the appropriate equations (34)Re Deconvolution

find the intersection of the line parameterized(by,, #,,) with  The formulae are essentially the same as the general formulae

the parameterized boundary. The Fisher information matrixi34) and (29), hence omitted here.

then obtained by substituting (35) and (37) into (13).

. . VI. CRB FOR CONNECTED BOUNDARIES
C. Fourier Imaging

In this section, we compute Cramér—Rao bounds for
boundary estimation of a single domain in several imaging
examples, using the results of Section V.

In this case,

Wz, y, s, 1) = exp{—j2n(sz + ty)}. (38)

A. Estimation of Radius of a Circle on a Flat Background
Therefore, we have

To illustrate the mechanics of computing the bounds, and
9gm (0) _ /Af(u)e—jQTr[sma:(u)—‘,—tmy(u)] (biTn) (u)r(u) du, verlfythf';ltthe reSL_JIts confo_rmW|th|ntU|t|on,we con5|der|nth|s_
0b; subsection a particularly simple example. Because our focus is
(39) on the domain derivative technique, which is not involved in
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computing the derivative with respect fo in (20), we assume not intersect the disk, the measurement does not convey any
in the examples thaf; is known. The results for unknowfy  information about the domaiP, and the error bound is infinite.
can be obtained using (37), (40), or (29) in the respective exaliftese results are quite intuitive. What requires some interpreta-
ples, and would show increased error bounds on the unknotion, is the behavior of the bound near= r. First, att; = r,
shape parameters, because of the additional uncertainty. ~ we havecos(s,,)&(u]") + sin(s,)y(u;”) = 0 in (35), so that

We provide a closed-form expression of the Cramér—Rdue derivativeg,, (r)/0r is not defined, and the regularity con-
bounds for estimating the radius of a disk with known densitjitions for the CRB are not satisfied. This is an instance of the

f1 on a flat background with case mentioned below Lemma 1, whétdwu,) = 0. Next, for
|t1| smaller tharr but sufficiently close to itdg,, (r)/Or can be
folz, y) = { far (z,y) €A arbitrarily large—because of the steepness of the circle function
0: else, at that point. So the CRB vanishes|ag 1 .

Fourier Imaging: We assume the complex Gaussian model
so that the Fisher information matrix is given by (14). Using
(12), (14), (39), and (43), we obtain

where the support of the backgrounds a region that encom-
passes the unknown domain, i.&), C A. As discussed ear-
lier, the bounds only depend on the valuesfefz, y) at the

boundaryl’, so the particular shape and size\oflo not matter. o2 2 _ -2
However, to ensure that the different transforms we consider ar€, = ————— / e 2 (sircos(u)ttirsin(u)) g,
all well-defined, we assume thatis a known bounded region. r2(h=F2)* 1o .
For a circular domai centered at origin, the bounddry= _ o? 2 .
9D is given by e san exp{—j2mrw; cos(u)} du
2
01 -2
COSs|u - - @@
r={r] ( )} Juelo. 2w}, 42) (= oy Tl “n
sin(u)

where the radial frequeney, is given byw; = /s + t7 and

wherer > 0 is the unknown radius to be estimated (hefice -
Jo(+) denotes the zeroth order Bessel function:

r). In this case, for all; € [0, 27) we have

1 27 )
by (u) = [C?S(u)} . n(u) = [C?S(u)} , Jo(z) = Py / exp(jx cos(u)) du. (48)
Sln(u) s]n(u,) Jo
m(u) =7, bin=1 (43)  Asshownin (47), the boun@, is a function of the radial fre-

) . o guencyw; of the sampling points1, ¢1) in the Fourier domain.
Now we derive the CRB in closed form for estimationrdfom ¢ s lower bounded by

noisy measurements in problems of computed tomography,
Fourier imaging, and deconvolution. For simplicity, we assume C > o?
that we have a single noisy measuremergisaf ¢1 ). " T 422 fy — fo)?)
Computed TomographyAssume the real Gaussian model so
that the Fisher information matrix is given by (13). In order tecausg.Jo(z)| < 1 for all z, with equality atz = 0. The
apply (35), we first need to solve the trigonometric equatidawer bound in (49) is achievable if and only if the sampling
(34): point is at the origin, i.e.(s1, t1) = (0, 0). This is quite an
intuitive result, which indicates that of all Fourier samples, the
x(u) cos(s1) + y(u)sin(sy) — t; = 0. (44) DC coefficient conveys the most information about the size of
the circular domainD. Hence the CRB is smallest with a DC
measurement.
Deconvolution: Assume the real Gaussian model so that the
Fisher information matrix is given by (13). Using (11), (13), and
(43), for the Gaussian blur model (6) we have

(49)

Sincez(u) = r cos(u) andy(u) = rsin(u), we obtain
t; = rcos(u) cos(sy)+rsin(u) sin(sy) = rcos(u—s1). (45)

Equation (45) has zero, one, or two solutians us € [0, 27)
depending on the value ¢f relative tor. Using (11), (13), (35)

Ar2io?
and (43), we derive C, = 2mvor
) r2(f1 — f2)?
21— t3/r? o | o o
w’ |t1| <r . |:/ 67((5177‘cos(u))2+(t17rsin(u))‘)/?l/z) du:|
S P (46) 0
- ol > 7 o v P+ NI (rd\] (50)
undefined ty=r “h-pR exp( —5— | |To| 3 7

Equatlpn (46) reveals that thel error bound is proportional ered — \/W and I («) denotes the modified Bessel
the noise variance and to the inverse of the square of the 2ction of order zero:

ject-to-background contrast (if; | < r). The bound is indepen-
dent of the view angle, , which is to be expected, because of the Iz = 1
circular symmetry in the problem. Furthermore, if the ray does o(z) = o

/27r exp(z cos(u)) du. (51)
0
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Equation (50) shows th&t,. is again a function of the distance
d of sampling point(sy, t;) from the origin. For any fixed ra-
diusr of the disk, there is a distaneckfor the sampling point,
which minimizes the bound. For example, foe 5 andv = 2,
the minimizing distance for the sampling pointdg;, ~ 4.5.
Likewise, for any fixed sampling point there is an optimum ra-
dius r of circular domain that minimize€,.. For example, if
(s1, t1) = (0, 0), thend = 0, and (50) can be further simpli-
fied as

2 4 2
o7 v T
=—— — — . 2
< (f1 = f2)? 12 eXP<V2> 2)
.
A simple calculation shows th&t,. of (52) is minimized if the Hﬂ
domainD has radius: = v. ML

B. Estimation of Tumor on MRI Scan of Human Brain (®)

s . . Fig. 2. (a) MRI scan of a human brain with tumor and (b) 98% global
We now turn to a more realistic imaging problem motivategbnfidence region (indicated by the black region) for the boundary estimate

by image reconstruction from sparse Fourier samples [34]—[3%$ing Fourier data corrupted by complex Gaussian additive noise atSBIR

Considerthe 12& 128 MRI scan of a human brain with a tumor

in Fig. 2(a). The image has 256 gray levels and was taken frormaasurements. (We denote the corresponding signal-to-noise-

Harvard University medical database [38]. We parameterize thtio by SNR= 5.) Fig. 2(b) illustrates the resulting asymp-

boundary of the tumor using Fourier descriptors (FD) [2], [3]:totic global confidence region, in which asymptotically any un-

biased estimate of the boundary will lie with 98% probability.

. o This bound suggests that accurate estimates are possible even at

(u) =ao + Z (a; cos(iu) + arisin(iu)) low sampling rates, if we have a parametric description of the
=1 tumor shape and know both the density of the tumor and the

L .
y(u) = bo + Z (bi cos(it) + bpy sin(iu)), (53) MRI scan of the healthy brain.

=1

L

VII. PARTITIONED DENSITY WITH MULTIPLE BOUNDARIES
whereL = 15. In order to overcome the ambiguity due to they patitioned Density
starting point of the contour, in (53) the constraift,; = b; is

imposed [16]. Hence, the resulting parameter vegtist This section extends our previous results to more general

image configurations than (1), which assunfiés constant over

0=[a a1 --- asr by by --- bop]T € R+, D.Suppose the image can be partitioned into two disjoint re-
ions,
(54) °
e tumor Is assumed to have constant intensity. ,Y) =
, fa(z, y), (z,y) e R*\D,

Suppose that 64 uniformly spaced Fourier samples are taken.

This corresponds t64/(128%) = 0.4% of the Nyquist sam- \yhere the background imagg(z, v) is known, and the un-

pling rate that would be required to avoid spatial aliasing finhown domainD is a union of sub-domain®;, j =1, ..., L:
this 128x 128 image. Suppose furthermore we have a full ref- ' o

erence MRI scan of the healthy brain, and knawpriori the L

intensity of the tumor, and the number of FD coefficients. Then, D= U D;. (56)
the imaging problem can be formulated as shape estimation of j=1

the tumor on the known background. Note that in this simulation ) )

the known background image hihomogeneoudensity, and Each boundary’; = dD; is parameterized as

the boundary of the tumor isot star-shaped. Using the tech-
nigues described in Section V, we calculated the CRB for the

unknown FD coefficients. )
wheref; € R*/ denotes a separate unknown parameter vector.

The CRB matrixCy is 61 x 61, and even its 61-element diag h ire d i ized by th
onal is unwieldy, and hard to interpret. Instead we have appligaus’ the ent|Tre ome%l T IS pa@ramet_erlze y tLe parameter
ctord = [0, ..., 0] of dimensionK = >/, K;. In

the global confidence region technique of [18] to the examng ) e
of Fig. 2(a) and used the comput€y to compute, in turn, the genergl, the sub-domains; ’.“?ed ngt be .d'.SJ.O'm' h_ence the
98% asymptotic global confidence region, which is readily VgomamD can be further partitioned intg disjoint regions:
sualized. Consider an example where the Fourier samples are p

corrupteql with additive complex Gaussian noise With a stan- D= U O, O,NQ =0, j+#k. (58)
dard deviatiorr equal to 20% of the rms value of the noise-free Pt

Lj= {(J(U, 01'): uel=]0,2m)}, (57)
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Furthermore, for each sub-domdin}, there exists an index set
Q(j) c {1, ..., P} such that

U o (59)

keQ(J)

We requirefi(z, y) to be constant over each <@j:

P
=" fixa (=, v) (60)
k=1
(@ (b)
wherexq, denotes the indicator function of the $&t, andff  Fig. 3. (a) Synthetic phantom image; (b) direct Fourier inversion using 1024
is a constant. The partitioned density model (60) is quite genevalformly spaced Fourier samples.

and can also serve an approximation to continuous densities.
C. Estimating Boundaries of Synthetic Phantom

B. Computation of the CRB Consider the 128 128 simulated phantom in Fig. 3(a). The
Hero et al. [15] conjectured that to derive performancgphantom consists of four circular boundarles j =1, ..., 4
bounds for the case of multiple domains, detection theoretid¢édr the disksD;, j =1, ..., 4), which are parameterized by:

analysis using hypothesis testing would be necessary. This
problem can however be addressed in an estimation frame- (,; g.) [%} . [COS(“)] i=1,....4 (67)
work.4 Combining the object model (55) and the measurement”’ j sin(u)

equation (2), we can represe, with respect to each
q @) presegtz, y) P whered; = [r;, z;, y;]7. The true values of the parameters are

domainD;: i
given by:
g(s, t) = / filz, h(z, y, s, t) dzdy [0.80 0.76
D; 01 = 0 N 02 = 0 s
+/ fa(z, (@, y, s, ) dz dy L 0 —0.02
R>\D 0.21 0.21
0= | —0.20 0, = 0 |. (68)
h t)dxdy. (61 3 ’ 4
+/D\D-fl(x’ y) (:U? Y, s, ) €T ay ( ) 0.35 —0.45
From the partitioned density in (60), we define: For this problem[Ds, Dy C Dy C Dy, and the domai) =
U;=1 D; is partitioned as follows:
fri(my)= > fixo (@, y) (62) y
keQ(s) D= U Qs (69)
Foje@y) = > fixelsy).  (63) k=1
ke{l,..., P}\Q(J) where
Using (61)—(63), we then have Q1 = Di\Da, Qs = Do\ (D3 U D), Qs = Dy, Q4 = D
. . 70
89—((;‘.’)) =67 (D, bgﬂ)) - / 7 <b§?>, n> d,  (64) (70)
9 T The partitioned imagé (z, y) in the domainD is piecewise

W) W) constant and given by
wheref;”” andb;’’ denote theth element of); and the corre-

sponding basis function, respectively, and f1 = xa,, +0.2xq,, + 0.4xq,, + 0.4xq,,; (72)
Zi(x,y, s, t) = (f1.i(x, y) — frje(x, y)h(z, y, s, t). where the intensities for each doman
(65) fi=[1 02 04 04] (72)
Furthermore, the derivative with respect to the pixel vaflfiés  can be estimated in casepriori knowledge of them are not
given by available.
i The first imaging example is again image reconstruction
99(8) (s, 1) = / h(z, y, s, t)dS. (66) from sparse Fourier samples [34]-[37]. Suppose, that 1024 uni-
off Q formly spaced Fourier samples are taken, which corresponds to

4However, the comments in Footnote 2 also apply to the estimation of tﬂ924/(128 X 128) = 6.25% of the NquiSt rate. Direct Fourier
numberL. of subdomains, or regior, if these are unknowa priori. inversion [Fig. 3(b)] exhibits strong aliasing artifacts. Suppose
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(@) (b)
Fig. 4. lllustration of 95% global confidence regions for parametric estimation (@ (b)
of the boundaries of the object in Fig. 3 from 1024 uniformly spaced Foungig 5. lllustration of the 95% global confidence regions for parametric

sample_s and samples' with additive complex Gaussi_an noise atﬁNﬂRdB estimation of the boundaries of the object in Fig. 3 from 1024 uniformly spaced
assuming (a) known pixel values, and (b) unknown pixel values, respectlvel)ﬁadon samples with sampling parameters\of = N, = 32 with additive

real Gaussian noise at SNR 27 dB assuming (a) known pixel values and
we knowa priori that the image consists of four circles. Ther(t) unknown pixel values, respectively.
the imaging problem can be formulated as the estimation of

the center locations and the radii of each region, and the CRRBppose furthermore that the Radon transform is sampled uni-
for the unknown parameter vectors can be obtained using fa@mnly both in angles and in radial directiort with N, and
techniques described in the previous section. The resulting samples, respectively, such that the total number of sam-
CRB is a 12x 12 matrix and is rather difficult to interpret. Wep|es isNT % Na = 1024. We again use the asymptotic g|0ba|
therefore do not show it explicitly. confidence region technique and compute the 95% asymptotic
We have applied the asymptotic global confidence regigjlobal confidence region for the same synthetic phantom ex-
technique to the example of Fig. 3(a) and computed the 98%mple. Here we assume that the Radon transform samples are
asymptotic global confidence region for an example where tBgrrupted with additive Gaussian noise at SNR7 dB.
Fourier samples are corrupted with additive complex Gaussiansig 5(4) and (b) illustrate the resulting asymptotic global con-
noise at SNR= 10 dB. First we assume that intensity (72}jjence regions forN, = N, = 32 assuming both known
is known. Fig. 4(a) illustrates the resulting asymptotic globalhg ynknown intensities, respectively. As observed in Fig. 5(a),
confidence region, in which asymptotically any unbiased esflie poundary estimates of the large regions are nearly perfect
mate of the boundary will lie with 95% probability. This boundypile the boundary estimates of the small regions suffer from
suggests that accurate estimates are possible even under allgye uncertainty. 1& priori knowledge of intensities of (72)
sampling rates, if we hawepriori knowledge of the number of i ot available, the uncertainty of the boundary estimates in-
domains and their densities. In addition, Fig. 4(a) tells us th@lease as shown in Fig. 5(b). Especially, the uncertainties of the
the estimates of small region boundaries are more uncertgif|;ndaries of the thin ring surrounding the object increase sig-
while the boundaries of large regions can be estimated Veficantly. Note the single wide confidence region in Fig. 5(b)
accurately. In Fig. 4(b), we also computed the 95% globgl; the two boundaries of the thin ring surrounding the object.
confidence regions assuming unknown intensity. Interestingi;s is the union of the individual regions for each of the con-
the uncertainty contribution from the unknown pixel values argntric circles. Compared to Fig. 5(a), we can deduce that the
not so significant that we can obtain nearly the same glohghcertainty of the outer ring estimate is mainly due to the uncer-
confidence regions. . tainty of the image value inside the narrow ring. Therefore, the
The second imaging example is a computed tomographihgie wide confidence region should be interpreted as uncer-
problem. Under the same boundary parameterization (67)dfnty of the location of the ring as whole rather than suggesting
each x-ray always crosses the object boundary twice, then it the outer boundary will be estimated to be interior to the

derivatives ofgy,(8) with respect tof; = [r;, =, ;]” are jnner boundary of the ring with some probability.
given by However, if we increase the radial and decrease the angular
. 2 sampling rates such that, = 64 and N, = 16, accurate esti-
M =Af; Z 1 (73) mation of boundaries can be achieved for both known and un-
Ir; ! 5 |sin (8m = “lmj)| known intensities as shown Fig. 6(a) and (b). Note that both

9 . boundaries of the outermost ring can be nearly perfectly esti-
Igm(0) . cos (uy, ;) mated while the other uncertainty regions are significantly re-
=Af (DD 1 (74)

O sin (sm - ulm, i duced compared to those in Fig. 5(a) and (b). Apparently, ra-
) dial resolution is more important than angular resolution in this
0gm(09) . sin (UL”) example. As observed from this discussion, the CRB and the
2 =AY = (75) - . .
0y; — |Sm (sm — Ufn_j) | global confidence region analysis can be used to design the op-
- i timal sampling pattern.
whereu,, ; is computed by: The last imaging example is a deconvolution problem with
’ circular Gaussian point spread function given by (6). We again

T COS (u’m] — Sm) = tm — T c08(5m,) — yisin(sy,). (76) assume that 1024 uniformly spaced samples are taken from

=1
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Fig. 6. lllustration of the 95% global confidence regions for parametri s i . f the 95% alobal fid . ¢ )
estimation of the boundaries of the object in Fig. 3 from 1024 uniformly spacéd@: 8: lllustration of the 95% global confidence regions for parametric
Radon samples with sampling parameters\of = 16 and N, = 64 with estimation of the boundaries of the object in Fig. 3 from 1024 uniform samples

additive real Gaussian noise at SNR27 dB assuming (a) known pixel values ©f Plurred image with Gaussian point spread function at real Gaussian noise
and (b) unknown pixel values, respectively. level of SNR= 15 dB assuming known pixel values. Gaussian point spread

function width parameters are given by ¢a)= 0.4 and (b)r = 0.00165,
respectively.

= the wide associated confidence regions. These results provide a
/ \ bound and asymptotic performance predictiondobiasedes-

(_) { timators. Better estimates may be provided by biased estimators

W (e.g., by bracketing the boundary position between the sampling

points), but their performance is not bounded or predicted by the

CRB and associated confidence regions.
O VIIl. CONCLUSIONS
This paper has introduced a general method to compute

Cramér—Rao bounds for parametric shape estimation in linear
(a) (b) inverse problems, such as computed tomography, Fourier

Fig. 7. lllustration of the 95% global confidence regions for parametritnagiNg, deconvolution, and etc. Although the imaging map
estimation of the boundaries of the object in Fig. 3 from 1024 uniform samplés linear, the dependence of the measurements on the shape of
of blurred image with Gaussian point spread function at real Gaussian notf.% object, as described by its boundaries, is highly nonlinear.
level of SNR= 15 dB and Gaussian point spread function width paramete, W
given byr = 0.2 assuming (a) known pixel values, and (b) unknown pixe¥V€ showed that if object boundaries are parameterized using
values, respectively. a finite number of unknown parameters, Cramér—Rao bounds

can be obtained using domain derivative technigues. In addi-

ign to providing explicit expressions for the components of

the 95% global confidence regions are illustrated in Fig. 7(5 € Cramér-Rao bounds for computed tomography, Fourier

and (b) for both known and unknown intensities, with Gaussidna9'ng, and decqnvolutlon, our approach_ can be easily
width parameter = 0.2. These figures show that priori adapted to the particular form of any linear inverse problem
knowledge of the intensities greatly improves the estimatioh Jjth possibly nonlinear observations.
performance. We also computed the global confidence region
for a different value of the width parameter, in Fig. 8(a) and
(b). Comparing Figs. 7(a) and 8(a) reveals that, as might be
expected, a smaller width parametefless blurring) generally ~ The domain derivativeof the mapping/ in (17) is defined
gives better boundary estimation performance. This trendjisthe literature in terms of the infinitesimal variation dfwith
broken however, for sufficiently small (little or no blurring), respect to an infinitesimal deformation of the domain We
as shown in Fig. 8(b) as compared to Fig. 7(a), where thetroduce this definition, quote the key result [32], and use it to
uncertainty in the boundary of one of the inner circles is largesformulate the domain derivative in terms of a deformation of
for less blurring. the boundanyf’, proving a corollary and Proposition 1.

The apparently paradoxical behavior, where “better measureSuppose the domaiR C R" is deformed by the family of
ments” appear to lead to “worse estimates” can be explaingdnsformationdT';: RY — RY:
in the following way. If v is much smaller than the distance
between the sampling points (or their majority) and the objec
boundaries, then the measurements become essentially decé'{J‘-(X; V) =x+1tV(x), xeRY, tel=[0.¢), (A1)
pled from the boundaries. Small changes in the boundary will
only produce vanishing changes in the measurement. This leéalssomec > 0, whereN denotes the dimension of the space of
to large values of the CRB’s on the boundary estimates, andator interest (for 2-D imagesy = 2), andV: RY — RV isa

blurred image. Under the same boundary parameterization (

APPENDIX A
DOMAIN DERIVATIVE
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continuously differentiable vector field. The family of deformedt follows thatT'; = 9D,. Using Theorem 1, we have

domains{D; }.c in directionV is then defined by

Dy =Ty(D; V)
é{ZERN:Z:X+tV(X)7XED}7 tel.

(A.2)

51D @)=0I(D: Q) = [ Z(@ wdr = [ Z(a wr,

r r (A 9)
where the last equality is because the restrictio@db I' is q
of (A.6). This concludes the proof. O

Next, we use this corollary to prove Proposition 1 (restated

Now we are ready to provide an explicit form of the domaihere with more detailed conditions).

derivative:

Proposition 1: Let D = D() be a domain with boundaty

Theorem 1 (Sokolowski and Zolesio [32, p. 77Buppose of classC!. Suppose the boundaFyis deformed as

the domainD is deformed by the transforfl; of (A.1), where
V is acontinuously differentiable vector field. Suppose, further- T, = T + tb; = {z|z = ¢(u) + tb;(u), v € I},

more, that the domain functioi(D) is given by

J(D) = /D Z dx, (A.3)

wheredx denotes a differential volume elementRd’ . Then,
the domain function/ (D) is shape differentiable with domain

derivative
A [0 .
8J(D; V) = (—/ de) = / div(ZV)dx. (A.4)
8t . Dt +=0 JD

Furthermore, ifD is a domain with the boundayD = T" of
classC?, then

80J(D; V) = /Z(V, n)dl,

(A.5)

where(-, -) denotes Euclidean inner product, amct RY de-
notes the outer-normal vector bf

(A.10)

whereb;(u) is continuously differentiable with respectioec
1. Then, the domain function (17)

g@zﬂmmz/ zds

D(#)

(A.11)

is shape differentiable with respect to boundary deformaiion
with domain derivative with respect to parametgr

99 b,
26; =6J(D; b;)
= /IZ(u)(thn) (u)7(u) du, i=1,..., K,
(A.12)
where Z(u) Z[¢(uw)], T(u) = (u)? + y(u)? and

A
#(u) and g(u) are the derivatives of the components of
¢(u) = [z(u), y(u)]T, andn denotes the outer-normal vector

Note that the transformatio’; of (A.1) is defined on the of I.

whole domairR¥ . Instead, the deformation of the domain can

also be given by the deformation of the boundary:

Ft:F—I—tq:{ze[R2N|z:>(:—{—tq(x)7XEF}7 (A.6)

Proof: Consider the domain deformation (A.10). In order
to apply Corollary 1, we sef(¢(u)) = b;(u), {(u) € T'. Using
the regularity conditions for the boundalry we can show that

q is a continuously differentiable vector field with respect to arc
length alondl". This follows, because, by assumptidn(u) is

where the vector fieldy: I' — RV is continuously differen- continuously differentiable with respect toe I, andr(u) =
tiable. For this transformation, we have the following corollary/#(u)? + y(u)? # 0 for all u € I because of the regularity of
Corollary 1: Let D be a domain with boundary of class -

C'. Suppose the boundalyis deformed as in (A.6), wherg

Now, sinceb; can be represented as a 1-D manifbld =

is a continuously differentiable vector field with respect to artbi(u): u € I}, the contour integral (A.7) can be represented
length. Then, the domain functioi D) of (A.3) is shape differ- as a 1-D integral with respect to the interval

entiable with respect to boundary deformatiprwith domain

derivative

§J(D; q) 2 <%/D de> :/FZ(q, n)dl, (A7)
t t=0

8J(D; b;) = / Z(q, n)dl’
T

= / Z(u) (an) (u)7(u) du.  (A.13)

I

whereD, denotes the domain with bounddry andn denotes Finally, because the domain deformation (A.10) is with respect

the outer-normal vector df.

Proof: LetQ:RY — R" be a continuously differentiable
extension of the vector field to RY, and define a new defor-

mation of D by D; = T,(D), where

T,(x) =x+tQ(x), xeR". (A.8)

to an infinitesimal change in the paramefigrwe have

dg
06,

=6J(D;by), i=1,..., K. (A.14)

This concludes the proof. O
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APPENDIX B
PROOF OFLEMMA 1

(11]

For anye > 0, define [12]

U, = U (u; — €, u; +€). [13]

14
Then, because the integrand is identically zerd ari., 14l

XL: /ui+s

Next, because the roots are isolatédcontinuously differen-
tiable andF”(u;) # 0, ¢ > 0 can be chosen such that is the
only root of F'(u) and F'(u) # 0 for u € (u; — €, u; + €),
for all 7. It follows that F'(u) is strictly monotone foru €
(ui —€, u;+¢),and has an inversi; (o) = u, witha = F(u), [1g]
and H,(0) = u;. We can therefore use the change of variables
a = F(u),

/'u1+f
’ /F(ui+5)
F(u;—e€)

where, because of the continuity Bfand its monotonicity on
the interval: € (u; —e, u;+¢€), F(u; —¢) < 0, andF (u; +¢€) >
0if F'(u;) > 0, with opposite signs otherwise. Using the sifting (4]
property ofé(-) we obtain

/ui-l—e
JU;—€

Substituting (A.17) into (A.15) concludes the proof.

(15]
8(F(u))G(u)du. (A.15)

[16]

[17]

[19]

8(F (u))G(u) du [20]

do

[21]
() ottt ()

= 8(c)G(H; (A.16)

[22]

(23]

(25]

§(F(u))G(u) du = 20D Glui)

- |EF'(H;(0))] = \F'(u;)| (A.17)

[26]

[27]
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