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Abstract—We address the problem of computing fundamental
performance bounds for estimation of object boundaries from
noisy measurements in inverse problems, when the boundaries
are parameterized by a finite number of unknown variables. Our
model applies to multiple unknown objects, each with its own
unknown gray level, or color, and boundary parameterization,
on an arbitrary known background. While such fundamental
bounds on the performance of shape estimation algorithms can in
principle be derived from the Cramér–Rao lower bounds, very few
results have been reported due to the difficulty of computing the
derivatives of a functional with respect to shape deformation. In
this paper, we provide a general formula for computing Cramér–
Rao lower bounds in inverse problems where the observations
are related to the object by a general linear transform, followed
by a possibly nonlinear and noisy measurement system. As an
illustration, we derive explicit formulas for computed tomography,
Fourier imaging, and deconvolution problems. The bounds reveal
that highly accurate parametric reconstructions are possible in
these examples, using severely limited and noisy data.

Index Terms—Cramér–Rao bounds, deconvolution, domain
derivative, Fourier imaging, global confidence region, linear
inverse problems, parametric shape estimation, performance
analysis, Radon transform, tomography.

I. INTRODUCTION

T HE PROBLEM of estimating object boundaries from
noisy measurements is encountered in applications such

as computed tomography (CT), image deconvolution, synthetic
aperture radar (SAR), and nonlinear inverse scattering. If the
boundary is represented mathematically as a curve in, there
is generally insufficient information to recover details of this
boundary from limited measurements. This situation is typical
of an ill-posed image reconstruction problem.

In such problems, the boundary is often parameterized by a
finite number of unknown variables. Such a parametric formu-
lation (for instance using B-splines [1] or Fourier descriptors
[2], [3]) is a first step toward constructing a stable boundary
estimation algorithm. This type of parameterization imposes
smoothness on the reconstructed boundary and provides the

Manuscript received August 20, 2001; revised July 22, 2002. This work was
supported by a grant from DARPA under Contract F49620-98-1-0498, admin-
istered by AFOSR, and by NSF Infrastructure under Grant CDA 96-24396. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Mark R. Luettgen.

J. C. Ye was the University of Illinois at Urbana-Champaign, Urbana, IL
61801 USA. He is now with Philips Research USA, Briarcliff Manor, NY 10510
USA (e-mail: jong.ye@philips.com).

Y. Bresler and P. Moulin are with the Coordinated Science Laboratory, De-
partment of Electrical and Computer Engineering, University of Illinois at Ur-
bana-Champaign, Urbana, IL 61801 USA (e-mail: ybresler@uiuc.edu).

Digital Object Identifier 10.1109/TIP.2002.806249

basis for, e.g., an efficient maximum likelihood estimation al-
gorithm. Once a suitable parametric model has been identified,
fundamental bounds on the performance of shape estimation
algorithms can in principle be derived by computing the
Cramér–Rao lower bound (CRB).

Cramér–Rao lower bounds are widely used in problems
where the exact minimum-mean-square error of an estimator is
difficult to evaluate. The CRB provides an unbeatable perfor-
mance limit for any unbiased estimator, and hence can be used
to investigate the fundamental limits of parameter estimation
problems, or as a baseline for assessing the performance
of a specific estimator [4]. Furthermore, under fairly mild
regularity conditions, the CRB is asymptotically achieved by
the maximum likelihood estimator (MLE). Hence, the CRB
can also serve as a predictor of the high-SNR or large sample
performance of the MLE or other asymptotically efficient
estimators. Finally, the CRB can be used for optimum design
of the measurement system, e.g., by selecting sampling points
to minimize a functional of the CRB matrix, such as its trace
or determinant [5].

While CRB’s are available for estimation of signal parame-
ters such as target location [6]–[9], direction-of-arrival (DOA)
[5], [10]–[12], and size and orientation of a scatterer [9], [13],
[14], only recently has this type of analysis been conducted for
estimation of target shapes [15], [16]. In the paper by Hero
et al. [15], the boundary of a star-shaped object1 is param-
eterized using B-splines, and CRB’s for the B-spline coeffi-
cients are computed for several shapes in a magnetic resonance
imaging problem. However, these results are applicable only to
star-shaped objects.

For nonlinear inverse scattering problems, Ye, Bresler and
Moulin [16] employed the domain derivative technique [17] to
compute the CRB for arbitrarily shaped objects. The computa-
tion of the domain derivatives for nonlinear inverse problems is
usually problem-dependent and does not admit a general for-
mula. Hence it must be treated separately for each problem.
The focus of the present paper is on linear inverse problems,
for which explicit formulae can be given. Linear inverse prob-
lems provide a rich class of models, and underlie most (although
not all) imaging problems of interest in science and engineering.
Moreover, as we now emphasize, although the inverse problems
we consider are classified as linear with respect to the object,
they arenonlinearwith respect to the boundary shape. Therein
lies some of the difficulty of obtaining the CRB’s for these prob-
lems. Furthermore, as will be explained on Section III-B, the

1A setA 2 for n � 2 is called star-shaped if there exists a pointx 2 A
such that any ray emanating fromx crosses the boundary ofA only once. In
this case, the boundary@A can be parameterized by the angle with respect tox.
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measurement processes we consider may introduce further non-
linearity, so that the dependence of measurements on the object
itself is no longer linear. The techniques and results developed
in this paper therefore have broad applicability in imaging prob-
lems.

The CRB’s computed using the techniques of this paper can
also be used to compute a global uncertainty region around the
boundary [18], providing an easily interpreted geometric dis-
play of boundary uncertainty. A related idea has been applied to
tomographic reconstruction by Hansonet al. [19]. The uncer-
tainty regions in [19] were however constructed using Monte-
Carlo simulations for a particular estimator. Hence, they are lim-
ited to that estimator, and are time-consuming to construct. In
contrast, our global confidence region can be easily and quickly
constructed using the CRB covariance matrix, even before the
construction of an estimator is attempted.

This paper is organized as follows. Section II introduces the
basic shape estimation problem. In Section III, we briefly review
the statistical framework of parametric boundary estimation,
and discuss the significance of the Cramér–Rao lower bound.
Section IV introduces the domain derivative, which allows the
computation of the CRB’s in shape estimation problems. Sec-
tion V derives the domain derivatives for CT, Fourier imaging,
and deconvolution. The CRB is then computed for several illus-
trative examples in Section VI. Section VII extends our theory to
an object composed of multiple domains. Conclusions are pre-
sented in Section VIII.

II. SHAPE ESTIMATION PROBLEM

Consider a real-valued image consisting of a con-
stant-valued 2-D object and a known background density

:

(1)

The intensity and region are unknown, whereas
is known for all . This scenario models an object of
constant but unknown intensity and unknown shape, partly oc-
cluding (or replacing) aknownbackground. This situation arises
in applications requiring the imaging of localized changes or
anomalies in a reference object, or the imaging of objects on a
homogeneous background. Particular imaging scenarios satis-
fying these assumptions will be discussed later in the context of
specific imaging modalities. Small (and often unavoidable) un-
structured deviations of the assumed backgroundfrom its ac-
tual values will be accommodated by the uncertainties in the sta-
tistical measurement model (e.g., additive measurement noise)
described in the sequel. The object is thus completely defined
by its image value and its boundary . The support set

need not be a connected region, so the formulation includes
the case of multiple objects.

Let be a general linear integral transformation of,
defined by

(2)

where : is a known kernel, and a subset of .
We assume that and satisfy appropriate conditions so that
is well defined. For example, one such set of conditions is that

is bounded, and is absolutely integrable for any
.

Suppose is sampled at a finite number of posi-
tions . The estimation problem we consider is
to estimate the object boundary from noisy measurements

of the samples , .
Our goal is to derive fundamental bounds on the estimation ac-
curacy of for specified statistics of the measurement noise.
Examples of the linear operator (2) are as follows.

A. Computed Tomography

Consider tomographic reconstruction from line-integral pro-
jections or the samples of the 2-D Radon transform. The Radon
transform of a 2-D function , is defined as the collection of
line integrals of along lines, indexed by these lines’ angle
from the -axis and at distancefrom the origin:

(3)

where is the Dirac impulse. The function is assumed to
be such that (3) is well-defined [20]. For example, it is sufficient
that the 2-D Fourier transform of exist, which is satisfied if
is absolutely integrable. In turn, a sufficient condition for this
in our setup, is that be bounded, sufficiently smooth, and
supported on a bounded region, which is satisfied in all practical
applications.

This reconstruction problem (and several variations thereof
[20]) is of interest in numerous applications [21], of which
medical x-ray CT is the best known. In medicine, the problem
of shape estimation of constant density objects arises in the
imaging of blood vessels or heart chambers filled with contrast
agents, or in emission tomography of regions marked by
radioactive tracers. It also arises in nondestructive evaluation
of metal castings for the presence of cracks or bubbles, or
monitoring nuclear reactor cores. In geophysics it may be an
appropriate model for estimating the shape of an underground
reservoir. The known background in these applications
may be obtained from baseline reference scans in medicine,
CAD models in nondestructive evaluation, etc.

B. Fourier Imaging

The second problem we consider is Fourier imaging [22],
[23]. This problem arises in applications such as synthetic aper-
ture radar (SAR) [24], [25], diffraction tomography (DT) [6],
magnetic resonance imaging (MRI) [26], and other image for-
mation modalities [22]. In Fourier imaging, measurements are
samples of the 2-D Fourier transform:

(4)

The same sufficient conditions as in the computed tomography
problem are applicable to the Fourier imaging problem too. We
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note that the Fourier imaging formulation often arises as a linear
approximation to inverse wave scattering problems [27]. Ob-
jects of interest in these applications are often essentially im-
penetrable (e.g., the conductive metal shell of an aircraft, or the
surface of the earth in SAR) or fully penetrable (e.g., “sound
soft” in the case of permittivity profile inversion [27]). In ei-
ther case, the boundary conditions on the objects are such that
the constant-valued object model is an accurate description. As
in the tomography problem, the known background
in these applications may be obtained from baseline reference
scans. For example, in the case of transient change detection
(response to a stimulus in functional MRI, or the appearance
of a target in SAR) an accurate image of the static background

may be easily obtained, because of the essentially un-
limited time available for data acquisition. In other applications,
such as imaging on a sky background, a constant background
may be assumed.

C. Deconvolution

The last problem we consider is deconvolution—a ubiqui-
tous problem in all areas of science and engineering. Suppose
the image of (1) is blurred with a shift-invariant point
spread function . The noiseless blurred image is
given by

(5)

where is the 2-D convolution, and denotes the image do-
main, respectively. For the convolution to be well de-
fined, it is sufficient that one of and be bounded and the
other absolutely integrable, which is satisfied in all practical ap-
plications. For instance, if the point spread function is Gaussian
with width parameter , then (5) takes the form

(6)

Deconvolution is a key problem in imaging systems and
seismic inversion [22]. As in the other imaging problems,
the known background in these applications may be
obtained from baseline reference scans. For example, in the
case of change detection in an optical surveillance problem, an
accurate image of the static background may be easily
obtained from the previous scenes.

III. STATISTICAL FRAMEWORK FOR PARAMETRIC

SHAPE ESTIMATION

A. Parametric Boundary Model

Since the estimation of from a finite number of noisy sam-
ples is generally an ill-posed inverse problem, a pos-
sible remedy is to represent the boundaryas a known function
with a finite number of unknown parameters:

(7)

where is an unknown parameter
vector, and an interval. Because object boundaries cor-
respond to closed contours,is a closed interval, and
a periodic function of , with period equal to the length . In
particular, we use the series expansion model

(8)

where is the th basis function. Parameterizations
such as Fourier descriptors (FD) [2], [3], B-splines [1] and
wavelet descriptors [28], [29] are special cases of this model
and have been widely used for shape representation.2

Throughout the paper, we assume that the boundaryis a
1-manifold in , or of class in order to apply in Section IV
standard results about the domain derivative, which require this
condition.

In practice, this regularity condition is not too restrictive and
implies that the boundary is sufficiently smooth without any
cusps and crossings. Equivalently, a parameterized-manifold

should be continuously differentiable with respect
to , its inverse should be continuous to avoid any crossing, and

for all to prevent any cusps, where
and denote the derivatives of theand components

of with respect to . These regularity conditions are in
addition to the earlier condition that be periodic
with period .

Under the series expansion model (8), in order to sat-
isfy these regularity conditions, the basis function :

should be continuously differentiable.
The conditions for avoiding intersecting boundaries and cusp
are, however, more difficult to impose for each basis function

, because these are global properties contributed by the linear
combination of all basis functions. Therefore, we will assume
that the parameters are chosen such that
the resultant boundary does not have
crossings and cusps.

B. Cramér–Rao Inequality

The measurements are a noisy version of
. The measurement model is specified by a con-

ditional probability density function (pdf) , where
denotes a particular realization of the random vector. Note
that this formulation includes the case where the observation
involves a nonlinear transformation of such as in x-ray or
positron emission tomography problems where the measure-
ment is Poisson distributed with rate .

We denote the th noise-free sample by
, where

(9)

2The estimation of an “optimum” model orderK can be done using model
order selection criteria such as MDL [30], as illustrated in [31]. Because an
unknown model order will increase the estimation error, the CRB’s on the
boundary shape still provide a lower bound on the pointwise error in estimation
of the boundary even whenK is unknown. The detailed analysis of the effects
of unknownK is, however, outside the scope of this paper, and we will assume
that the model orderK is knowna priori.
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in order to show explicitly the dependence on the unknown pa-
rameter vector.3 In view of the parametric representation (7)
and (8) of the object, and the image formation model (2),is
completely determined by the unknown vectorand the known
background , and the statistics of can be described by

(10)

which we denote, for brevity, by .
Given data and its statistical description by , the

shape reconstruction problem has been reduced to a statistical
parameter estimation problem. As is well-known, the variance
of an unbiased estimator of is subject to a fundamental
limit—the Cramér–Rao lower bound (CRB). Moreover, under
appropriate regularity conditions, the maximum likelihood esti-
mator (MLE) achieves the CRB asymptotically [4]. Hence, the
CRB is not only a lower bound, but is also useful for predicting
the large sample or high SNR performance of the MLE, or
other asymptotically efficient estimators. The accuracy of the
shape estimate can in turn be assessed from the accuracy of the
parameter estimate. In particular, one can then construct global
confidence regions for the object boundary [18]. Here, we first
concentrate on the derivation of a procedure for computing
the CRB. According to the Cramér–Rao inequality, subject to
some regularity conditions on the conditional pdf , the

covariance matrix of the estimation error
for the unknown parameter is bounded from below as

[4]

(11)

for any unbiasedestimate of . Here, the matrix inequality
notation indicates that is positive semidefinite,
with and being Hermitian positive semidefinite matrices. In
(11), the Fisher information matrix,, is the
matrix

(12)

where is the log-likelihood function, and denotes
gradient with respect to.

C. Fisher Information Matrix

For any pdf for which the Fisher information matrix
is well-defined, it follows from the chain rule that the entries of

in (12) are (possibly nonlinear) functions of and the
derivatives , .

For examples, if the noisy measurement is a Gaussian
random variable with mean and variance , under the
additional assumption of independence of measurements at dif-
ferent locations, the th element of the Fisher information
matrix is given by

(13)

3The measurementg(s ; t ) is also a function ofknown background
f (x; y). However, this dependence is not explicitly expressed sincef (x; y)
is assumed known.

whereas for the complex circular Gaussian noise with mean zero
and variance we have

(14)

where denotes the real part and the superscriptdenotes
the conjugation.

While (13) and (14) appear simple, techniques for computing
the derivatives for models of the form (2) and
(7), (8) have not been studied in the literature, except for special
cases in a magnetic resonance imaging problem [9], [14], [15].
We now develop a general technique to compute those quantities
in a generic linear inverse problem.

D. From CRB’s to Global Confidence Regions

In practice, because describes the geometry of an ob-
ject, one is interested in assessing the quality of estimates of

in easily interpreted geometric terms. Rather than the
quality of estimates of itself, what is needed is a global quality
measure for the entire boundary . The CRB

computed by the techniques of this paper can be used, as
described in [18], to construct small-sizeglobal confidence re-
gionsin the asymptotic regime where the estimate is unbiased,
efficient, and Gaussian. Bounds are given in [18] for the proba-
bility that the entire boundary estimate lies in the global confi-
dence region. We illustrate the construction of such confidence
regions in the numerical examples in Sections VI and VII.

IV. DOMAIN DERIVATIVE

Combining the object model (1) and the noise-free measure-
ment equation (2) yields

(15)

Equation (15) then defines a mapping: from
the set of domains , or equivalently, boundaries , to the
space of functions . This mapping admits the general form:

(16)

where , , , and are known
functions on , is the unknown object support, and

is a function independent of .
Given our parameterization of the boundary, we can rewrite

(16) to display explicitly the dependence on,

(17)

Our goal is compute the derivatives . The idea is to
proceed using a two-step approach akin to the chain rule: i) find
the change (deformation) of produced by an infinitesimal
change in ; ii) then find the change in produced by
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the corresponding infinitesimal deformation of. Because
is represented by its boundary in our parameterization, it
is more convenient to consider the corresponding deformations
of .

The first step is easy. In view of (7)–(9), a change into
produces the deformed boundary

(18)

where is the th basis function in the linear model (8) and
is the parametric representation of boundary given by (8).

The second step thus requires to compute the change in
produced by deformation of to for infinitesimal

. This is known as thedomain derivativeor the shape deriva-
tive, and has been studied extensively in structural mechanics
[32]. Drawing upon these results we prove in Appendix A the
following result:

Proposition 1: Let be a domain with boundary
of class . Suppose the boundaryis deformed as in (18).

Then, the domain function (17) is shape differentiable with re-
spect to boundary deformation, with domain derivative with
respect to parameter:

(19)

where , where
and are the derivatives of the components of

, and denotes the outer-normal vector
of .

The derivative with respect to is even simpler, of
course, because it does not involve the domain derivative:

(20)

Using (19) [and (20) if needs to be estimated] we are ready
to compute the CRB’s for the examples mentioned earlier. We
begin by deriving an explicit expression for .

V. DOMAIN DERIVATIVES FORLINEAR INVERSEPROBLEMS

A. General Expressions

Combining (1) and (2) and separating the contribution of the
domain from the integral in (2), we obtain

(21)

where

(22)

(23)

Using (19), (21), and (23), we have

(24)

(25)

where

(26)

denotes the derivative of with respect to , and
denotes the Euclidean norm. In (24), the outer-normal vector
at is given by

(27)

and so

(28)

where and denote the and components of , respec-
tively. The derivative with respect to is given by

(29)

An important though somewhat expected observation that
follows from (24), is the following. Although the measurements

, and in fact the existence of the transforms that define them,
often depend on all of the background, the Fisher informa-
tion matrix only depends on the values of the background
on the boundary of the domain .

B. Computed Tomography

Combining (2), (3), and (24) it follows that

(30)

where denotes the Dirac impulse and

(31)

(32)

Note that in (30) if the equation has no solution
on , the integral is trivially zero. However, when

does have a solution, multiple such solutions may exist, all
contributing to the integral. Lemma 1 provides the formula for
the integral accounting for all these contributions.

Lemma 1: Let functions : be continuously differ-
entiable and : be continuous, where . Suppose
furthermore has isolated roots
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such that and . Then, if does not have
roots on boundary points of, or if is a closed interval and
periodic on with period equal to its length , we have

(33)

where is the Dirac delta function, denotes the derivative
of , and is the absolute value.

Proof: See Appendix B.
Note that if any of the roots of is multiple, then

and (33) is not defined. An example of this case
will be presented in Section VI-A, demonstrating that in our
application of the lemma this case corresponds to violation of
the regularity conditions of the CRB.

Now we apply Lemma 1 to (30). Let denote the number
of solutions of , and denote theth such
solution, i.e., [by (31)]

(34)

Referring to Fig. 1, we identify as the th intersection
of the boundary with the line indexed by . Using
Lemma 1 and (34), we have

(35)

where

(36)

By (29), the derivative with respect to is given by

(37)

which is a line integral projection of the indicator function of
the domain . Referring again to Fig. 1, this quantity equals the
sum of the lengths of the chords formed by the intersection of the
line parameterized by with the domain . The lengths
can be computed by solving the appropriate equations (34) to
find the intersection of the line parameterized by with
the parameterized boundary. The Fisher information matrix is
then obtained by substituting (35) and (37) into (13).

C. Fourier Imaging

In this case,

(38)

Therefore, we have

(39)

Fig. 1. Set off(x(u ); y(u ))g of line-boundary intersections for a
tomography problem.

where and and are given
by (26) and (28), respectively. By (29), the derivative with re-
spect to is given by

(40)

which is the Fourier transform of the indicator function of,
evaluated at .

The following alternative expression, involving a 1-D instead
of a an area integral, is obtained using Green’s theorem [33]:

(41)

This expression is particularly convenient when the boundary
is parameterized by (8). Even when it can not be evaluated in
closed form, its numerical evaluation requires, in general, less
computation for given accuracy than that for the area integral in
(40).

D. Deconvolution

The formulae are essentially the same as the general formulae
(24) and (29), hence omitted here.

VI. CRB FOR CONNECTEDBOUNDARIES

In this section, we compute Cramér–Rao bounds for
boundary estimation of a single domain in several imaging
examples, using the results of Section V.

A. Estimation of Radius of a Circle on a Flat Background

To illustrate the mechanics of computing the bounds, and
verify that the results conform with intuition, we consider in this
subsection a particularly simple example. Because our focus is
on the domain derivative technique, which is not involved in
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computing the derivative with respect to in (20), we assume
in the examples that is known. The results for unknown
can be obtained using (37), (40), or (29) in the respective exam-
ples, and would show increased error bounds on the unknown
shape parameters, because of the additional uncertainty.

We provide a closed-form expression of the Cramér–Rao
bounds for estimating the radius of a disk with known density

on a flat background with

else,

where the support of the backgroundis a region that encom-
passes the unknown domain, i.e., . As discussed ear-
lier, the bounds only depend on the values of at the
boundary , so the particular shape and size ofdo not matter.
However, to ensure that the different transforms we consider are
all well-defined, we assume thatis a known bounded region.

For a circular domain centered at origin, the boundary
is given by

(42)

where is the unknown radius to be estimated (hence
). In this case, for all we have

(43)

Now we derive the CRB in closed form for estimation offrom
noisy measurements in problems of computed tomography,
Fourier imaging, and deconvolution. For simplicity, we assume
that we have a single noisy measurement at .

Computed Tomography:Assume the real Gaussian model so
that the Fisher information matrix is given by (13). In order to
apply (35), we first need to solve the trigonometric equation
(34):

(44)

Since and , we obtain

(45)

Equation (45) has zero, one, or two solutions
depending on the value of relative to . Using (11), (13), (35)
and (43), we derive

undefined

(46)

Equation (46) reveals that the error bound is proportional to
the noise variance and to the inverse of the square of the ob-
ject-to-background contrast (if ). The bound is indepen-
dent of the view angle , which is to be expected, because of the
circular symmetry in the problem. Furthermore, if the ray does

not intersect the disk , the measurement does not convey any
information about the domain, and the error bound is infinite.
These results are quite intuitive. What requires some interpreta-
tion, is the behavior of the bound near . First, at ,
we have in (35), so that
the derivative is not defined, and the regularity con-
ditions for the CRB are not satisfied. This is an instance of the
case mentioned below Lemma 1, where . Next, for

smaller than but sufficiently close to it, can be
arbitrarily large—because of the steepness of the circle function
at that point. So the CRB vanishes as .

Fourier Imaging: We assume the complex Gaussian model
so that the Fisher information matrix is given by (14). Using
(11), (14), (39), and (43), we obtain

(47)

where the radial frequency is given by and
denotes the zeroth order Bessel function:

(48)

As shown in (47), the bound is a function of the radial fre-
quency of the sampling point in the Fourier domain.

is lower bounded by

(49)

because for all , with equality at . The
lower bound in (49) is achievable if and only if the sampling
point is at the origin, i.e., . This is quite an
intuitive result, which indicates that of all Fourier samples, the
DC coefficient conveys the most information about the size of
the circular domain . Hence the CRB is smallest with a DC
measurement.

Deconvolution: Assume the real Gaussian model so that the
Fisher information matrix is given by (13). Using (11), (13), and
(43), for the Gaussian blur model (6) we have

(50)

where and denotes the modified Bessel
function of order zero:

(51)
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Equation (50) shows that is again a function of the distance
of sampling point from the origin. For any fixed ra-

dius of the disk, there is a distancefor the sampling point,
which minimizes the bound. For example, for and ,
the minimizing distance for the sampling point is .
Likewise, for any fixed sampling point there is an optimum ra-
dius of circular domain that minimizes . For example, if

, then , and (50) can be further simpli-
fied as

(52)

A simple calculation shows that of (52) is minimized if the
domain has radius .

B. Estimation of Tumor on MRI Scan of Human Brain

We now turn to a more realistic imaging problem motivated
by image reconstruction from sparse Fourier samples [34]–[37].
Consider the 128 128 MRI scan of a human brain with a tumor
in Fig. 2(a). The image has 256 gray levels and was taken from a
Harvard University medical database [38]. We parameterize the
boundary of the tumor using Fourier descriptors (FD) [2], [3]:

(53)

where . In order to overcome the ambiguity due to the
starting point of the contour, in (53) the constraint is
imposed [16]. Hence, the resulting parameter vectoris:

(54)

The tumor is assumed to have constant intensity.
Suppose that 64 uniformly spaced Fourier samples are taken.

This corresponds to % of the Nyquist sam-
pling rate that would be required to avoid spatial aliasing for
this 128 128 image. Suppose furthermore we have a full ref-
erence MRI scan of the healthy brain, and knowa priori the
intensity of the tumor, and the number of FD coefficients. Then,
the imaging problem can be formulated as shape estimation of
the tumor on the known background. Note that in this simulation
the known background image hasinhomogeneousdensity, and
the boundary of the tumor isnot star-shaped. Using the tech-
niques described in Section V, we calculated the CRB for the
unknown FD coefficients.

The CRB matrix is 61 61, and even its 61-element diag-
onal is unwieldy, and hard to interpret. Instead we have applied
the global confidence region technique of [18] to the example
of Fig. 2(a) and used the computed to compute, in turn, the
98% asymptotic global confidence region, which is readily vi-
sualized. Consider an example where the Fourier samples are
corrupted with additive complex Gaussian noise with a stan-
dard deviation equal to 20% of the rms value of the noise-free

(a)

(b)

Fig. 2. (a) MRI scan of a human brain with tumor and (b) 98% global
confidence region (indicated by the black region) for the boundary estimate
using Fourier data corrupted by complex Gaussian additive noise at SNR= 5.

measurements. (We denote the corresponding signal-to-noise-
ratio by SNR 5.) Fig. 2(b) illustrates the resulting asymp-
totic global confidence region, in which asymptotically any un-
biased estimate of the boundary will lie with 98% probability.
This bound suggests that accurate estimates are possible even at
low sampling rates, if we have a parametric description of the
tumor shape and know both the density of the tumor and the
MRI scan of the healthy brain.

VII. PARTITIONED DENSITY WITH MULTIPLE BOUNDARIES

A. Partitioned Density

This section extends our previous results to more general
image configurations than (1), which assumesis constant over

. Suppose the image can be partitioned into two disjoint re-
gions,

(55)

where the background image is known, and the un-
known domain is a union of sub-domains :

(56)

Each boundary is parameterized as

(57)

where denotes a separate unknown parameter vector.
Thus, the entire domain is parameterized by the parameter
vector of dimension . In
general, the sub-domains need not be disjoint, hence the
domain can be further partitioned into disjoint regions:

(58)
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Furthermore, for each sub-domain , there exists an index set
such that

(59)

We require to be constant over each set:

(60)

where denotes the indicator function of the set, and
is a constant. The partitioned density model (60) is quite general
and can also serve an approximation to continuous densities.

B. Computation of the CRB

Hero et al. [15] conjectured that to derive performance
bounds for the case of multiple domains, detection theoretical
analysis using hypothesis testing would be necessary. This
problem can however be addressed in an estimation frame-
work.4 Combining the object model (55) and the measurement
equation (2), we can represent with respect to each
domain :

(61)

From the partitioned density in (60), we define:

(62)

(63)

Using (61)–(63), we then have

(64)

where and denote theth element of and the corre-
sponding basis function, respectively, and

(65)

Furthermore, the derivative with respect to the pixel valueis
given by

(66)

4However, the comments in Footnote 2 also apply to the estimation of the
numberL of subdomains, or regionsP , if these are unknowna priori.

(a) (b)

Fig. 3. (a) Synthetic phantom image; (b) direct Fourier inversion using 1024
uniformly spaced Fourier samples.

C. Estimating Boundaries of Synthetic Phantom

Consider the 128 128 simulated phantom in Fig. 3(a). The
phantom consists of four circular boundaries
(for the disks ), which are parameterized by:

(67)

where . The true values of the parameters are
given by:

(68)

For this problem, , and the domain
is partitioned as follows:

(69)

where

(70)

The partitioned image in the domain is piecewise
constant and given by

(71)

where the intensities for each domain

(72)

can be estimated in casea priori knowledge of them are not
available.

The first imaging example is again image reconstruction
from sparse Fourier samples [34]–[37]. Suppose, that 1024 uni-
formly spaced Fourier samples are taken, which corresponds to

% of the Nyquist rate. Direct Fourier
inversion [Fig. 3(b)] exhibits strong aliasing artifacts. Suppose
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(a) (b)

Fig. 4. Illustration of 95% global confidence regions for parametric estimation
of the boundaries of the object in Fig. 3 from 1024 uniformly spaced Fourier
samples and samples with additive complex Gaussian noise at SNR= 10 dB
assuming (a) known pixel values, and (b) unknown pixel values, respectively.

we knowa priori that the image consists of four circles. Then,
the imaging problem can be formulated as the estimation of
the center locations and the radii of each region, and the CRB
for the unknown parameter vectors can be obtained using the
techniques described in the previous section. The resulting
CRB is a 12 12 matrix and is rather difficult to interpret. We
therefore do not show it explicitly.

We have applied the asymptotic global confidence region
technique to the example of Fig. 3(a) and computed the 95%
asymptotic global confidence region for an example where the
Fourier samples are corrupted with additive complex Gaussian
noise at SNR 10 dB. First we assume that intensity (72)
is known. Fig. 4(a) illustrates the resulting asymptotic global
confidence region, in which asymptotically any unbiased esti-
mate of the boundary will lie with 95% probability. This bound
suggests that accurate estimates are possible even under at low
sampling rates, if we havea priori knowledge of the number of
domains and their densities. In addition, Fig. 4(a) tells us that
the estimates of small region boundaries are more uncertain
while the boundaries of large regions can be estimated very
accurately. In Fig. 4(b), we also computed the 95% global
confidence regions assuming unknown intensity. Interestingly,
the uncertainty contribution from the unknown pixel values are
not so significant that we can obtain nearly the same global
confidence regions.

The second imaging example is a computed tomography
problem. Under the same boundary parameterization (67), if
each x-ray always crosses the object boundary twice, then the
derivatives of with respect to are
given by

(73)

(74)

(75)

where is computed by:

(76)

(a) (b)

Fig. 5. Illustration of the 95% global confidence regions for parametric
estimation of the boundaries of the object in Fig. 3 from 1024 uniformly spaced
Radon samples with sampling parameters ofN = N = 32 with additive
real Gaussian noise at SNR= 27 dB assuming (a) known pixel values and
(b) unknown pixel values, respectively.

Suppose furthermore that the Radon transform is sampled uni-
formly both in angle and in radial direction with and

samples, respectively, such that the total number of sam-
ples is . We again use the asymptotic global
confidence region technique and compute the 95% asymptotic
global confidence region for the same synthetic phantom ex-
ample. Here we assume that the Radon transform samples are
corrupted with additive Gaussian noise at SNR27 dB.

Fig. 5(a) and (b) illustrate the resulting asymptotic global con-
fidence regions for assuming both known
and unknown intensities, respectively. As observed in Fig. 5(a),
the boundary estimates of the large regions are nearly perfect
while the boundary estimates of the small regions suffer from
some uncertainty. Ifa priori knowledge of intensities of (72)
is not available, the uncertainty of the boundary estimates in-
crease as shown in Fig. 5(b). Especially, the uncertainties of the
boundaries of the thin ring surrounding the object increase sig-
nificantly. Note the single wide confidence region in Fig. 5(b)
for the two boundaries of the thin ring surrounding the object.
This is the union of the individual regions for each of the con-
centric circles. Compared to Fig. 5(a), we can deduce that the
uncertainty of the outer ring estimate is mainly due to the uncer-
tainty of the image value inside the narrow ring. Therefore, the
single wide confidence region should be interpreted as uncer-
tainty of the location of the ring as whole rather than suggesting
that the outer boundary will be estimated to be interior to the
inner boundary of the ring with some probability.

However, if we increase the radial and decrease the angular
sampling rates such that and , accurate esti-
mation of boundaries can be achieved for both known and un-
known intensities as shown Fig. 6(a) and (b). Note that both
boundaries of the outermost ring can be nearly perfectly esti-
mated while the other uncertainty regions are significantly re-
duced compared to those in Fig. 5(a) and (b). Apparently, ra-
dial resolution is more important than angular resolution in this
example. As observed from this discussion, the CRB and the
global confidence region analysis can be used to design the op-
timal sampling pattern.

The last imaging example is a deconvolution problem with
circular Gaussian point spread function given by (6). We again
assume that 1024 uniformly spaced samples are taken from
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(a) (b)

Fig. 6. Illustration of the 95% global confidence regions for parametric
estimation of the boundaries of the object in Fig. 3 from 1024 uniformly spaced
Radon samples with sampling parameters ofN = 16 andN = 64 with
additive real Gaussian noise at SNR= 27 dB assuming (a) known pixel values
and (b) unknown pixel values, respectively.

(a) (b)

Fig. 7. Illustration of the 95% global confidence regions for parametric
estimation of the boundaries of the object in Fig. 3 from 1024 uniform samples
of blurred image with Gaussian point spread function at real Gaussian noise
level of SNR= 15 dB and Gaussian point spread function width parameters
given by� = 0:2 assuming (a) known pixel values, and (b) unknown pixel
values, respectively.

blurred image. Under the same boundary parameterization (67),
the 95% global confidence regions are illustrated in Fig. 7(a)
and (b) for both known and unknown intensities, with Gaussian
width parameter . These figures show thata priori
knowledge of the intensities greatly improves the estimation
performance. We also computed the global confidence region
for a different value of the width parameter, in Fig. 8(a) and
(b). Comparing Figs. 7(a) and 8(a) reveals that, as might be
expected, a smaller width parameter(less blurring) generally
gives better boundary estimation performance. This trend is
broken however, for sufficiently small (little or no blurring),
as shown in Fig. 8(b) as compared to Fig. 7(a), where the
uncertainty in the boundary of one of the inner circles is larger
for less blurring.

The apparently paradoxical behavior, where “better measure-
ments” appear to lead to “worse estimates” can be explained
in the following way. If is much smaller than the distance
between the sampling points (or their majority) and the object
boundaries, then the measurements become essentially decou-
pled from the boundaries. Small changes in the boundary will
only produce vanishing changes in the measurement. This leads
to large values of the CRB’s on the boundary estimates, and to

(a) (b)

Fig. 8. Illustration of the 95% global confidence regions for parametric
estimation of the boundaries of the object in Fig. 3 from 1024 uniform samples
of blurred image with Gaussian point spread function at real Gaussian noise
level of SNR= 15 dB assuming known pixel values. Gaussian point spread
function width parameters are given by (a)� = 0:4 and (b)� = 0:00165,
respectively.

the wide associated confidence regions. These results provide a
bound and asymptotic performance prediction forunbiasedes-
timators. Better estimates may be provided by biased estimators
(e.g., by bracketing the boundary position between the sampling
points), but their performance is not bounded or predicted by the
CRB and associated confidence regions.

VIII. C ONCLUSIONS

This paper has introduced a general method to compute
Cramér–Rao bounds for parametric shape estimation in linear
inverse problems, such as computed tomography, Fourier
imaging, deconvolution, and etc. Although the imaging map
is linear, the dependence of the measurements on the shape of
the object, as described by its boundaries, is highly nonlinear.
We showed that if object boundaries are parameterized using
a finite number of unknown parameters, Cramér–Rao bounds
can be obtained using domain derivative techniques. In addi-
tion to providing explicit expressions for the components of
the Cramér–Rao bounds for computed tomography, Fourier
imaging, and deconvolution, our approach can be easily
adapted to the particular form of any linear inverse problem
with possibly nonlinear observations.

APPENDIX A
DOMAIN DERIVATIVE

The domain derivativeof the mapping in (17) is defined
in the literature in terms of the infinitesimal variation ofwith
respect to an infinitesimal deformation of the domain. We
introduce this definition, quote the key result [32], and use it to
reformulate the domain derivative in terms of a deformation of
the boundary , proving a corollary and Proposition 1.

Suppose the domain is deformed by the family of
transformations : :

(A.1)

for some , where denotes the dimension of the space of
our interest (for 2-D images, ), and : is a
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continuously differentiable vector field. The family of deformed
domains in direction is then defined by

(A.2)

Now we are ready to provide an explicit form of the domain
derivative:

Theorem 1 (Sokolowski and Zolesio [32, p. 77]):Suppose
the domain is deformed by the transform of (A.1), where

is a continuously differentiable vector field. Suppose, further-
more, that the domain function is given by

(A.3)

where denotes a differential volume element in . Then,
the domain function is shape differentiable with domain
derivative

(A.4)

Furthermore, if is a domain with the boundary of
class , then

(A.5)

where denotes Euclidean inner product, and de-
notes the outer-normal vector of.

Note that the transformation of (A.1) is defined on the
whole domain . Instead, the deformation of the domain can
also be given by the deformation of the boundary:

(A.6)

where the vector field : is continuously differen-
tiable. For this transformation, we have the following corollary.

Corollary 1: Let be a domain with boundary of class
. Suppose the boundaryis deformed as in (A.6), where

is a continuously differentiable vector field with respect to arc
length. Then, the domain function of (A.3) is shape differ-
entiable with respect to boundary deformation, with domain
derivative

(A.7)

where denotes the domain with boundary and denotes
the outer-normal vector of.

Proof: Let : be a continuously differentiable
extension of the vector field to , and define a new defor-
mation of by , where

(A.8)

It follows that . Using Theorem 1, we have

(A.9)
where the last equality is because the restriction ofto is
of (A.6). This concludes the proof.

Next, we use this corollary to prove Proposition 1 (restated
here with more detailed conditions).

Proposition 1: Let be a domain with boundary
of class . Suppose the boundaryis deformed as

(A.10)

where is continuously differentiable with respect to
. Then, the domain function (17)

(A.11)

is shape differentiable with respect to boundary deformation,
with domain derivative with respect to parameter:

(A.12)

where , and
and are the derivatives of the components of

, and denotes the outer-normal vector
of .

Proof: Consider the domain deformation (A.10). In order
to apply Corollary 1, we set , . Using
the regularity conditions for the boundary, we can show that

is a continuously differentiable vector field with respect to arc
length along . This follows, because, by assumption, is
continuously differentiable with respect to , and

for all because of the regularity of
.
Now, since can be represented as a 1-D manifold

: , the contour integral (A.7) can be represented
as a 1-D integral with respect to the interval:

(A.13)

Finally, because the domain deformation (A.10) is with respect
to an infinitesimal change in the parameter, we have

(A.14)

This concludes the proof.
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APPENDIX B
PROOF OFLEMMA 1

For any , define

Then, because the integrand is identically zero on ,

(A.15)

Next, because the roots are isolated,continuously differen-
tiable and , can be chosen such that is the
only root of and for ,
for all . It follows that is strictly monotone for

, and has an inverse , with ,
and . We can therefore use the change of variables

,

(A.16)

where, because of the continuity ofand its monotonicity on
the interval , , and

if , with opposite signs otherwise. Using the sifting
property of we obtain

(A.17)

Substituting (A.17) into (A.15) concludes the proof.
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