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ABSTRACT
Dynamic positron emission tomography (PET) is widely
used to measure variations of radiopharmaceuticals within
the organs over time. However, conventional reconstruction
algorithm can produce a noisy reconstruction if there are not
sufficient photon counts. Hence, the main goal of this paper
is to develop a novel spatio-temporal regularization approach
that exploits inherent similarities within intra- and inter-
frames to overcome the limitation. One of the main contri-
butions of this paper is to demonstrate that such correlations
can be exploited using a low rank constraint of overlapping
similarity blocks. The resulting optimization framework is,
however, non-smooth and non Lipschitz due to the low-rank
penalty terms and Poisson log-likelihood. Therefore, we
propose a novel globally convergent optimization method
using the concave-convex procedure (CCCP) by exploiting
Legendre-Fenchel transform, which overcomes the memory
and computational limitations. We confirm that the proposed
algorithm can provide significantly improved image quality
and extract accurate kinetic parameters.

Index Terms— Dynamic PET reconstruction, patch, low-
rank, concave-convex procedure, convex conjugate functions,
Legendre-Fenchel transform

1. INTRODUCTION

Quantification of spatial and temporal radiotracer distribution
is one of the important topics in dynamic PET studies [1].
Typically, the time activity curves (TACs) of concentration
and kinetic parameters are obtained from the reconstructed
images from time frames. For the case of short acquisition
time, each time frame data has low photon counts, which
results in very noisy reconstruction. To enhance the image
quality from such photon limited data, various dynamic re-
construction algorithms have been proposed [1]. By extend-
ing the existing researches, we are interested in developing
a novel spatio-temporal regularization scheme that exploits
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correlation structures within each intra and inter frames. In
particular, this paper exploits geometric similarities in intra
and inter frames. We found that a row rank constraint, which
is originated from matrix completion problem in compressed
sensing [2], is very useful to exploit self-similarities since the
matrix rank is less sensitive to the intensity offset and is easier
to capture edges, etc. In addition, we propose an overlapping
patch based non-convex low rank penalty to exploit geometric
self similarities. However, there are several technical chal-
lenges. First, the self-similarity structures are unknown be-
fore the final reconstruction is obtained. To address the first
issue, this paper proposes a re-fineable patch search method,
which iteratively refines the similarity blocks during recon-
struction. Second, non-convex patch based low rank penalty
term is non-smooth and the gradient of Poisson log-likelihood
is non-Lipschitz, so optimization problem is non-trivial. Di-
rect application of conventional Poisson image deconvolution
by augmented Lagrangian (PIDAL) [3] algorithm is, however,
problematic due to a large memory requirements, which pro-
hibit its parallelization. To deal with this issue, the concave-
convex procedure (CCCP) [4] is employed to convexify the
concave rank prior and to make a EM-type separable likeli-
hood function. Interestingly, the resulting subprogram have a
pixel-by-pixel close form expression, which allows the algo-
rithm converge fast, and the graphic process unit (GPU) im-
plementation can be applied easily without additional mem-
ory allocation as in PIDAL. We perform simulation studies to
validate the proposed algorithm. Our results demonstrate that
the proposed algorithm can provide significantly improved re-
construction quality and accurate kinetic parameters. GPU
implementation shows the reconstruction time is practical for
clinical environment.

2. PROBLEM FORMULATION

2.1. Notation, Loglikelihood
First, we define the negative loglikelihood function from Pois-
son statistics as:

L(X) =
S∑
s=1

〈1,Axs〉 − 〈ys, log(Axs)〉, (1)
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where 1 denotes a vector with elements of ones, and X =
[xns]

N,S
n,s=1, Y = [yms]

M,S
m,s=1, A = [ans]

M,N
m,n=1 where

xns denotes the unknown image at voxel n at time s; and
yms represents the m-th detector measurement at time s, and
amn denotes the probability that an emission photon from n-
th voxel is detected at them-th detector position, respectively.

2.2. Spatio-Temporal Patch-based Low Rank Penalty
It is well-known that a natural image has geometric self-
similarities, i.e. some parts of the images are similar to
different parts of the images. Thus, in our dynamic PET re-
construction, we are interested in imposing a patch-based low
rank penalty to exploit self similarities. More specifically, to
Eq. (1), we add patch-based low rank penalty for group of
patches written as following:

Ψo(X,R) =
P∑
p=1

λpRank(Vp), (2)

where

Vp =
[

Rp1x Rp2x · · · RpQpx
]
∈ RB×NS

where Rpq, q = 1, · · · , Qp denotes a size B patch extraction
operator from the vectorized spatio-temporal volume of im-
age x = vec(X). We denote R = {Rpq}

P,Qp
p,q=1 as a collection

of such operator.
There exists two important issues in using the penalty in

Eq. (2). First, the rank operator is not convex, we could use
the nuclear norm as a convex relaxation [2]:

Ψ(V,R) =
P∑
p=1

λp‖Vp‖∗ , (3)

where ‖Vp‖∗ =
∑Rank(Vp)
k=1 σk(Vp) and σk(Vp) denotes the

k-th largest singular value of Vp. However, since it has been
shown that concave penalty outperforms that convex nuclear
norm [5] and the CCCP optimization framework in this paper
prefers to concave prior, we use the following concave rank
prior [5]:

‖Vp‖ν =
Rank(Vp)∑
k=1

hµ,ν (σk(Vp)) , 0 < ν ≤ 1. (4)

where the generalized Huber function hµ,ν(t) is defined as

hµ,ν(t) =
{
|t|2/2µ, if |t| < µ1/(2−ν)

|t|ν/ν − δ if |t| ≥ µ1/(2−ν) (5)

where δ = (1/ν−1/2)µν/(2−ν) to make the function contin-
uous.

Second, to construct a group of similarity patches, we
need to find a similarity relationships {Rpq}

P,Qp
p,q=1. However,

Fig. 1. Description of the patch grouping and low-rank calcu-
lation.

in dynamic PET, the vectorized image x is the very object
that needs to be estimated, so {Rpq}

P,Qp
p,q=1 is not known a pri-

ori. To address this issue, we perform a re-fineable similarity
searches, i.e. we fix a similarity mapping {Rpq}

P,Qp
p,q=1 using

the previous estimation of X, and find a new estimate from
the updated image.

3. OPTIMIZATION FRAMEWORK

In this paper, we employ the concave-convex procedure
(CCCP) [4] to minimize the resulting optimization prob-
lem. The CCCP is especially useful when non-convex terms
exist. Consider a typical minimization problem given by

min
x
L(Ax) + Ψ(x) .

Suppose Ψ(x) is concave. As −Ψ(x) is convex, there exist a
convex function Ψ∗(v) such that

Ψ(x) = min
v

Ψ∗(v)− 〈v,x〉 .

Therefore, the original primal problem can be converted as

min
x

min
v
L(Ax) + Ψ∗(v)− 〈v,x〉 .

Even if neither L nor Ψ are concave, there exists several ways
to apply CCCP. For example, let us define a nonlinear con-
cave coordinate transform z = G(Ax). Then, L(Ax) =
L
(
G−1(z)

)
= L̃(z). Even though L is convex, there often

exists a nonlinear transform G(·) such that L̃ can be concave.
In this case, we know that there exists a convex conjugate L̃
such that

L̃(z) = L(Ax) = min
v
L̃∗(v)− 〈v,G(Ax)〉 , (6)

where L̃∗ is a conjugate for L̃. Therefore, we can convert the
primal problem as

min
x

min
v
L̃∗(v)− 〈v,G(Ax)〉+ Ψ(x).

1159



Going back to the original problem, now assuming that R
is known, we need to solve the following minimization prob-
lem:

min
X∈RN×S

J(X) where J(X) = L(X) + Ψ(X,R) . (7)

L(X) denotes the negative loglikelihood and Ψ(X,R) is the
patch-based low rank penalty. Here, the penalty term is non-
convex, and the gradient of L(X) is non-Lipschitz, and each
element of X should be nonnegative. Now we show how
CCCP framework work for our optimization framework.

Note that the L(X) for the Poisson noise in Eq. (1) is con-
vex. To apply the CCCP, we use a concave coordinate trans-
form. More specifically, we define zsmn = log(amnxns).
Then, − log

(∑N
n=1 amnxns

)
= − log

(∑N
n=1 e

zsmn

)
,

which becomes concave with respect to {zsmn}Nn=1. There-
fore, we have

L(X) = min
c
Lc(X, c),

where

Lc(X, c) =
S∑
s=1

Axs + 〈cs, log cs〉 − 〈cs, log(Axs)〉. (8)

In the case of the patch-based rank penalty, we use the
generalized Huber function in Eq. (5). Here, |t|2/µ− hµ,ν(t)
is strictly convex. Therefore, the Legendre-Fenchel transform
tells us that there exist gµ,ν such that

hµ,ν(t) = min
s
{|s− t|2/µ+ gµ,ν(s)}. (9)

The corresponding rank penalty for a matrix V is given by

‖V‖hµ,ν =
∑
k=1

hµ,ν(σk(V))

= min
W

{
1
µ
‖V −W‖2F + ‖W‖gµ,ν

}
(10)

where ‖W‖gµ,ν =
∑
k=1 gµ,ν(σk(V)). Chartrand [5]

showed that gµ,ν(s) is convex when ν = 1, but in gen-
eral it is not convex. However, even when gµ,ν is non-convex
and does not have close form expression, there exist a close
form expression for the minimizer of Eq. (9) given as

shrinkν(t, µ) = max{0, |t| − µ|t|ν−1}t/|t| . (11)

Now, using Eq. (8) and Eq. (10), we have the following
minimization problem:

min
X,c,{Wp}Pp=1

Lc(X, c) +

P∑
p=1

λp

{
1

µ
‖Vp −Wp‖2F + ‖Wp‖gµ,ν

}
.

One of the main advantage of the proposed CCCP frame-
work is that each subproblem has close form solutions. Here,
we describe them in detail.

1. Minimization with respect to Wp

First, note that the minimization problem is indepen-
dent to Lc(X, c). Moreover, the problem can be de-
composed for each patch by patch. More specifically,
we have

W(k+1)
p = arg min

W

{
1

µ
‖V(k)

p −W‖2F + ‖W‖gµ,ν
}
. (12)

Using the shrinkage relationship in Eq. (11), the close
form solution for Eq. (12) is given by

W(k+1)
p = Lshrinkν(Σ, µ)UH ,

where shrinkν(Σ, µ) denotes an element by element
singular value shrinkage operator.

2. Minimization with respect to c
Using the constraint

∑N
n=1 c

s
mn = ym, we have the

following close form solution for the constrained opti-
mization problem:

cs(k+1)
mn = yms

amnx
(k)
ns∑N

n′=1 amn′x
(k)
n′s

, ∀m,n, s . (13)

3. Minimization with respect to X
Finally, for given c(k+1) and W(k+1), we can obtain a
close form solution for update of X(k+1). We calculate
a fixed point equation of the gradient of the cost func-
tion with respect to xns. Then, the close form solution
is given by

x(k+1)
ns =

−bns +
√

(bns)2 + 4dnsxEM
ns

∑M
m=1 amn

2dns
, (14)

where

xEM(k+1)
ns =

c
s(k+1)
mn∑M

m=1 amn

, (15)

and

dns :=
1

µ

∑
p∈Ins

λp, b(k+1)
ns =

∑
m

amn−
1

µ

∑
p∈Ins

λpw
(k+1)
p,ns .

Note that the solution is always non-negative, and our up-
date equation is pixel-by-pixel update similar to OSEM algo-
rithm, and guarantees the global convergence. Compared to
the augmented Lagrangian method [6], our framework does
not require any additional memory for storing Lagrangian pa-
rameter, so it is good for memory intense 3-D dynamic PET.
Moreover, each subprogram is completely parallelizable, so
GPU implementation is very straightforward.

4. EXPERIMENTAL RESULTS

Parametric imaging has been widely used to analyze dynamic
PET images. We set our simulation model using the two com-
partmental model with four rate constants with respect to the
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Fig. 2. Reconstruction images of (a)(d) Ground truth, (b)(e)
Gaussian smoothing of conventional OSEM, and (c)(f) the
proposed algorithm.

Grey matter K1 k2 k3

Ground-Truth 0.101 0.071 0.042
Gaussian mean 0.1075 0.1177 0.0611

smoothing std. 0.0245 0.1376 0.0813
Proposed mean 0.1022 0.0735 0.0418
method std. 0.0071 0.0178 0.0098

Table 1. Voxel-wise parameter analysis for the grey matter.

entry and return of tracers in tissue. The corresponding ki-
netic parameters of K1, k2, k3, k4(≈ 0) are shown in Ta-
ble 1. We then generated 15 frames of low photon count
emissions in grey and white matters using the Monte-Carlo
simulation in a high-resolution research tomograph (HRRT)
geometry. Specifically, in each frame, the size of image is
256×256×207, and the size of sinogram is 256×288×2209.
We used an Nvidia Tesla C2070 GPU on the Intel i7-2600
CPU platform.

We compared reconstruction images using Gaussian
smoothing of the conventional OSEM and the proposed al-
gorithm. In Fig. 2, the details of shapes were difficult to
be identified in Gaussian smoothing images, whereas our
proposed algorithm provided significantly enhanced details
of shapes and the boundaries of the grey matters are clearly
visible. Parameter extraction was also conducted in Table 1.
Here, our proposed algorithm provides accurate parameters
with small variations. Finally, to demonstrate the conver-
gence of the algorithm, the mean square error (MSE) and
negative loglikelihood in Eq. (1) were calculated as shown
in Fig. 3. We can confirm that the algorithm converges very
quickly. In our GPU implementation, the OSEM takes 4.5
sec, and the patch based low-rank penalty takes 13.8 sec,
which are 445 times and 78 times faster than CPU, respec-
tively. Total execution time of the proposed algorithm with

(a) (b)

Fig. 3. (a) Mean square error by iteration, (b) Negative log-
likelihood by iteration.

15 frames takes about 10 minutes, which is a reasonable time
for clinical environment.

5. CONCLUSIONS

In conclusion, we proposed a dynamic PET reconstruction us-
ing non-convex low rank patch based regularization and de-
rived a memory efficient globally convergent algorithm using
CCCP procedure. In simulation experiment, our proposed
algorithm provided significantly improved images. Further-
more, our GPU implementation reduced the computational
cost significantly so that it can be used in real clinical en-
vironment.
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