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ABSTRACT

A novel group analysis tool for data-driven resting state
fMRI analysis using group sparse dictionary learning and
mixed model is presented along with the promising indica-
tions of Alzheimer’s disease progression. Instead of using
independency assumption as in popular ICA approaches, the
proposed approach is based on the sparse graph assumption
such that a temporal dynamics at each voxel position is a
sparse combination of global brain dynamics. In estimating
the unknown global dynamics and local network structures,
we perform sparse dictionary learning for the concatenated
temporal data across the subjects by constraining that the
network structures within a group are similar. Under the
homoscedasticity variance assumption across subjects and
groups, we show that the mixed model group inference can
be easily performed using second level GLM with summary
statistics. Using extensive resting fMRI data set obtained
from normal, Mild Cognitive Impairment (MCI), Clinical
Dementia Rating scale (CDR) 0.5, CDR 1.0, and CDR 2.0
of Alzheimer’s disease patients groups, we demonstrated that
the changes of default mode network extracted by the pro-
posed method is more closely correlated with the progression
of Alzheimer’s disease.

Index Terms— Resting state fMRI, sparse dictionary
learning, inference, mixed model, Alzheimer’s disease

1. INTRODUCTION

Data driven analysis methods including independent compo-
nent analysis (ICA) [1] are well suited for studying resting
state fMRI data [2], since there is no pre-defined paradigm for
resting state brain. It is now well-known that these methods
can extract default mode network (DMN) from resting state
brain. In humans, the default network has been considered to
generate spontaneous thoughts at rest and has been hypothe-
sized that weakening DMN may be related to certain disor-
ders including Alzheimer’s disease, autism, and schizophre-
nia [3]. However, as the concept of brain functional con-
nectivity can only be reasonable based upon certain level of
dependence between signals in the brain, algorithms such as
ICA based on the independence of signals may have funda-
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mental limitations in analyzing brain connectivity. More in-
terestingly, it has been demonstrated that the success of ICA
for resting state data analysis is due to their ability to han-
dle sparse components rather than independent components
[4]. Inspired by these findings, our group has developed a
data driven fMRI analysis method called sparse SPM using
sparse dictionary learning that extract data-dependent regres-
sors, and have demonstrated excellent activation detection in
individual analysis in fMRI experiments [5].

However, one of the technical difficulties in data-driven
approach like sparse SPM is that the extracted temporal dy-
namics corresponding to each DMN highly depends on each
individual. Moreover, the individual dependent regressors
should be estimated at the same time while the group level
statistical inferences should be performed using the subject
specific regressors. This makes the group sparse learning
and statistical inference complicated. Similar difficulties have
been observed in other data driven approaches such as ICA.
In group ICA, the problem has been addressed using concate-
nating the data or using tensor factorization. However, while
group wise activation maps can be detected using these type
of approaches, more advanced group analysis like two-sample
t-test, or analysis of variance (ANOVA) are often difficult to
explain in a unified framework.

In this paper, to overcome such limitation in group analy-
sis, we propose a unified mixed model framework where a
group level sparse dictionary learning and group inference
can be performed in a unified linear mixed model framework.
More specifically, under the homoscedasticity variance as-
sumption across subjects and groups, which are often used
in SPM, we show that group sparse dictionary learning can
be performed using K-SVD [6] for concatenated data and
the group inference is equivalent to the inference using sum-
mary statistics. To validate the proposed method, we com-
pared DMN changes among normal, MCI, CDR 0.5, CDR
1.0 and CDR 2.0 of patients with Alzheimer’s disease groups.
Through this, we expect our proposed method would show the
disease progression signatures, which clearly indicates that
the results using the proposed method are closely correlated
with clinical progression.



2. THEORY

2.1. Group Sparse Dictionary Learning

In Sparse SPM [5], the interactions of neural signal between
brain’s functional systems are modeled by a set of nodes (vox-
els) linked by connections as shown in Fig. 1. Each circle
denotes voxel or node where a temporal dynamics of BOLD
signal is measured continuously. A set of nodes in functional
brain network form a community sharing same information
flows in addition to long-range connections from different
communities. For example, in Fig. 1, time series at the node
1 and 2, denoted by y; € R™ and y5 € R™, is given by

y1=3d; +d3+dy, y2=4dy+ds+ds.

If we define a global dictionary D by collecting all local or
long-range information flows as

D= [d17d27"' 7d5]7

then we can easily see that the temporal dynamics at the nodes
1 and 2 are described as a sparse linear combination of the
atoms in the global design matrix. In general, we have

Dlnxln+€n7n:17"'7N (l)

where € denotes noise, D;, € R™*¥ is a submatrix of D
composed of elements in the index set I,,, and x;, € RF
denotes the corresponding weight vectors. Note that a local
subset index I, represents a local network structure at the n-th
voxel, and a regressor is a representative dynamics in a net-
work module or community that shares the same information
flow.

Yn

Community 2

Community 1

Fig. 1. A graph theoretical model for Sparse SPM.

For sparse dictionary learning from L subjects within a
group, we perform sparse dictionary learning using the con-
catenated times series from multiple subjects. More specifi-
cally, suppose YV = [yy), e 7yg\l,)] denotes a collection of
time trace across all /N voxels, then we construct a concate-

nated temporal time trace from L subjects across all voxels

Yy = [YOT ... y(TIT Then, K-SVD algorithm [6] de-
composes the concatenated data Y as following:
y® DM
Y = : =DX = : [x1, - ,XN] 2)
y (@) D)

where D denotes the concatenated global sparse dictionary
and D® denotes the corresponding I-th subject individual
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sparse dictionary, and X is the corresponding coefficients.
Once the dictionary D is obtained, the individual dictionary
D is normalized such that each column has unit norm.

Recall that in K-SVD, the i-th column of D represents the
first principle component of the set of temporal dynamics at
the voxel locations that have non-zero coefficients in the i-
th row of X. Hence, the i-th column of resulting individual
dictionary {D(}L | share the same geometric connectivity.
Hence, if we assume that the local design matrix index I,
is same across all subjects, it implies that our sparse learn-
ing rule is imposing the constraint that local network struc-
ture within a group is same. This learning rule is very ad-
vantageous to identify the group differences since the net-
work connectivity changes between groups are one of the
main biomarkers in resting-state fMRI analysis.

2.2. Group Analysis using Mixed Model

Suppose we are interested in comparing a different groups.
Once the group sparse dictionary learning is performed, the
temporal dynamics at the n voxel of the subject [ in the i-th
group model is modeled as

v = DO + e, e~ N(O,R(Y)  (3)
where ¢ = 1,--- ;a, | = 1,---, L; denote the indices for

group and the subject index for each group, respectively, and
L; is the number of subjects for the group i. Now, the subject
differences within a group can be modeled as random effects:

“4)

where agf ) denote a group mean. Hence, if we stack the
data together, (after ignoring the voxel dependent index n),
we have the following mixed model

xi) = o) + 870, 8L ~ N(0,Gy),

y=Xa+ZB+e€, 5)
where
y = [y(ll)T y(12)T y(lLl)T y(2L2)T}T c RM
a [a(l)T’a(Q)T}T c RP
/6 = [/651,11)Ta /6;12)T7 e 5651,1L1)Ta te 7/@5L2L2)T]T € R?

and the random effect matrix Z is given by

(11)

DIEL” 0 0

S| 0 Dy} 0
' ' (éL. )
0 0 DL(LQ)z

and the fixed effect matrix is
_ 1, ®1 0
X=7Xqg, Xg= 0 1 &1

Then, using the standard results for the solution of mixed
model, the fixed effect parameter estimate & from the mixed



model is equivalent to the second level GLM using the sum-
mary statistics

x=Xca+n, n~N07Vq). ©)
~ (1L (2L
where x = [X ;1(11))T, S?T’ . 7X§}L1)1)T7 . (?2)2)71] and
o) _ (@D)T p—(il) (il) GE)T p—(il il
1o = (lef) B )DISJ')) Do It Wy @

Under the assumption that G,, = g2 1, Vi is a block diagonal
matrix whose (il)-th block is composed of

(D(ll)TR (zl)D(ll)
Y

) + 21 8)

2.3. Group Inference

In practice, the covariance component R(*) and G,, = 2T
need to be estimated. A rigorous way of doing covariance
estimation is using restricted maximum likelihood (ReML)
method. However, ReML is usually computationally ex-
pensive. Moreover, transferring the individual design matrix

DE( )) to the second level analysis is computationally demand-

ing and memory intensive, since the design matrix is spatially
and individually varying. To simplify the covariance esti-
mation and the resulting inference, we first approximate that
D7Dt
malized to have unit norm, this implies that each regressors
are nearly orthogonal. If the assumption does not hold, the
contrast can be correlated, but we can still obtain meaningful
inferences as discussed in existing SPM. Next, we assume
that the noise in individual temporal dynamics is white, i.e.

Rgf D= (@1)21 This can be easily satisfied using prewhiten-
ing procedure. Finally, we employ the homoscedasticity vari-
ance assumption across subjects and groups, i.e. ol 2 = o2,
which has been also often used in SPM.

Another important advantages of these approximation
is that the proposed group sparse dictionary learning can be
shown as maximum likelihood estimation framework with the
unified mixed model. Moreover, as described in the follow-
ing, the group level inference can be significantly simplified.
More specifically, in group inference, we are interested in
testing the following null hypothesis:

~ [. Since each individual dictionary is nor-

H()ZC(I:O

where C € RP**P denotes the contrast matrix. Since
(XTV—1X)" = (XEV;'Xe)™, the test statistics for the
mixed model is equivalent to the second level inference statis-
tics:

S

R —1
arcT (C(XgVC;lXG)—CT) Céfpr .
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Now, under the aforementioned assumptions, we can show
that Vi is diagonal matrix, hence using simple matrix manip-
ulations, we can show that

XM-—p
P1

~T
X (Px,, — Px.)

X" P x

S

~ Fpu

where X o denotes the reduced model by excluding the ef-
fect estimated by contrast C' and u = mzu L;; — p and
X 1s summary statistics. Since this F'-statistics are standard
statistics for ANOVA analysis, the result indicates that we
can perform classical ANOVA analysis using the summary
statistics, and such analysis is equivalent to the inference in
mixed model as long as our assumption holds. Moreover, we
do not need to perform computationally expensive ReML co-
variance estimation since the ReML variance estimation parts
are already built-in within the resulting F'-statistics.

3. METHOD

3.1. Data Acquisition

We collected five groups of resting-state fMRI data: 1) nor-
mal of 22 subjects (8 male, mean age 70 years), 2) MCI of
37 subjects (21 male, mean age 72 years), 3) CDR 0.5 of
20 subjects (5 male, mean age 72 years), 4) CDR 1.0 of 27
subjects (6 male, mean age 73.5 years), and 5) CDR 2.0 of
13 subjects (6 male, mean age 73.6 years). During the task
period, subjects were instructed to awake and alert, but not
actively involved in a task with eye closed. A 3.0T fMRI
system (Philips, Netherland) was used to measure the BOLD
response. The echo planar imaging (EPI) sequence was used
with TR/TE = 3000/35 ms, flip angle = 90°. Each acquisi-
tion consisted of 35 continuous slices, and FOV (RL, AP, FH)
=220 mm x 140 mm x 220 mm; voxel size (RL, AP) = 2.875
mm x 2.875 mm. In the subsequent anatomical scanning ses-
sion, T1-weighted structural images were acquired. A total
of 100 acquisitions are obtained for each subject thus the to-
tal recording time was 300 sec. The experiments have been
approved by the Institutional Review Board of the Samsung
Medical Center in South Korea.

3.2. Data Analysis using Conventional Methods

We used two conventional methods for resting state fMRI
analysis and compared with the proposed method. First,
Multi-session temporal concatenation of Multivariate Ex-
ploratory Linear Optimized Decomposition into Independent
Components (MELODIC v3.0) within FMRIB’s Software
Library (FSL) was used as an ICA methods. The following
parameters were applied in MELODIC analysis: 128 sec for
the high pass filter cutoff, motion correction, smoothing us-
ing a Gaussian kernel of FWHM 8 mm, normalization into
MNI coordinates with resampling resolution 2 mm, variance-
normalise timecourses, and 20 independent components for
the dictionary regressor to make the analysis condition as
same as the one of our proposed method. Second, we used



Functional connectivity toolbox (conn) based on Statistical
Parametric Mapping (SPM) for seed based analysis. The
region posterior cingulate cortex (PCC) was used for ROI
of this analysis and following procedures were also applied:
realignment, segmentation, normalization, smoothing using a
Gaussian kernel of FWHM 8 mm, band pass filter with cutoff
frequency of 0.008 — 0.09 Hz, and threshold p-value 0.001.

4. RESULTS

Comparative analyses of seed based analysis, ICA, and the
proposed method, were conducted among normal, MCI, CDR
0.5, CDR 1.0, and CDR 2.0. As in Fig. 2, the DMN patterns
can be extracted by any method, however the noticeable di-
minishing of DMN pattern along with AD progression can
be clearly seen by the proposed method while hardly distin-
guishable changes were acquired with other methods. Af-
ter performing omnibus F- test to find statistically signifi-
cant group effect on DMN (results not shown), we performed
1x2 ANOVA to find the differences between adjacent groups.
Fig. 3 illustrates two representative slices. As shown in the
figure, drastic changes in DMN and additional superior tem-
poral and inferior frontal gyri are observed between normal
and MCI groups. From MCI groups along with disease pro-
gression, the statistically significant different changes are ob-
served mostly in PCC with noticeable change in lateral pari-
etal area at the CDR 2.0.

86666

CDR 0.5

CDR1.0 CDR 2.0

CDR0.5 CDR1.0 CDR 20

MClI

CDR 0.5 <CDR1.0 CDR20

Fig. 2. The results of extracted DMN map using seed based
analysis (first row), ICA (second row), and the proposed
method (third row).

5. CONCLUSION

In this paper, we developed a unified mixed-model for group
sparse dictionary learning and inference for resting state fMRI
analysis. We compared our tools with the existing seed-based
and ICA approaches for normal, MCI and Alzheimer’s dis-
ease with different disease stage. The results indicated that
DMN network extracted using our method is closely corre-
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(a) (©) (d)
Fig. 3. 1 x 2 ANOVA maps with p < 0.05 (uncorrected): (a)
normal vs. MCI (b) MCI vs. CDR 0.5, (c) CDR 0.5 vs. CDR
1.0, (d) CDR 1.0 vs. CDR 2.0. The top rows represents slice
-6, and bottom one is slice 30.

(b)

lated with the progression of disease, indicating that the tool
has great potential for resting state fMRI analysis.
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