Sparse and Deep Learning Approaches for Biomedical Image Reconstruction: Part I: Compressed Sensing & Sparse Recovery

Jong Chul Ye

Bio-Imaging & Signal Processing Lab.
Dept. Bio & Brain Engineering
Dept. Mathematical Sciences
KAIST, Korea

This material can be downloaded from http://bispl.weebly.com
Applied mathematics, signal processing & machine learning for bio-medical imaging

MRI Acceleration
- Fast imaging using Compressed sensing
- ISMRM09 record challenge winner!
- k-t FOCSUSS

MRI Signal Processing
- MR artifact removal using ALOHA

Neuro-Imaging (statistical tool development)
- Diffuse optical tomography (DOT)
- Super-resolution imaging (FALCON)

Optical Imaging

PET Reconstruction
- Dynamic 4D PET reconstruction

Machine Learning/Deep Learning for Bio-medicine
- 2016 AAPM Low-Dose CT Grand Challenge Winner (WaveNet)

x-ray CT Reconstruction

Interior Tomography

http://bisp.kaist.ac.kr
Course Overview

1. Introduction
2. Part I: Compressive Sensing
 - Motion-compensated CS
 - Learning-based CS
 - Multiple measurement vector (MMV) CS
3. Part II: Low-rank Hankel Matrix Approaches
4. Part III: Deep learning approaches
5. Open problems and outlook
Roadmap: From CS to Deep Learning
Coherent Theme of Sparse Recovery
Resolution Limits in Medical Imaging

• **Diffraction Limit**

Resolution limit for optics, x-ray, PET, and etc.

\[\text{Resolution} \approx \frac{\lambda}{2\text{NA}} \]

http://www.microscopyu.com/
Resolution Limits in Medical Imaging

• Nyquist Sampling limit

- Nyquist requires the minimum two times sample rate w.r.t. signal bandlimit
- Resolution limit for Fourier based imaging (MRI, etc.)
Law of Parsimony: Sparsity, Low-rank, LDM

- Occam’s Razor: law of parsimony by William Occam (14th century)

 Entities should not be multiplied beyond necessity.
- All things being equal, the **simplest** solution tends to be the best one.
Super-resolution Microscopy

The Nobel Prize in Chemistry 2014

Eric Betzig
Prize share: 1/3

Stefan W. Hell
Prize share: 1/3

William E. Moerner
Prize share: 1/3

Compressed Sensing MR Imaging

- Forward problem

- Sparse recovery problem

Figure courtesy of Mathews Jacob
9 View CT Reconstruction using Deep Learning
COMPRESSED SENSING
Compressed Sensing (CS)

- Incoherent projection
- Underdetermined system
- Sparse unknown vector

\[b = A x \]

\[m \times 1 \text{ measurements} \]

\[m \approx k \log(n) \ll n \]

\[n \times 1 \text{ vector} \]

\[k \text{ # non-zeros} \]

Courtesy of Dr. Dror Baron
Min-norm Solution is Not sparse

\[T = \{x_p\} + \mathcal{N}(A) \]
L_0 Minimization

\[
\min_x \|x\|_0 \\
\text{subject to } b = Ax
\]

$\|x\|_0 = \{\# \text{ of non-zero elements of } x\}$

- Two fundamental questions
 - Uniqueness ?
 - Convex relaxation ?
Uniqueness and Spark

Definition

Given a matrix $A = [a_1, \cdots, a_n]$, the quantity $\text{spark}(A)$ is the smallest possible number of linearly dependent columns of A.

Theorem (Donoho, Elad)

$x \in \mathbb{R}^n$ is the unique solution of the problem $[P0]$ if $Ax = b$ and

$$\|x\|_0 < \frac{\text{spark}(A)}{2}.$$
L1 Convex Relaxation

\[
\begin{align*}
\min_{\mathbf{x}} \quad & \|\mathbf{x}\|_1 \\
\text{subject to} \quad & \mathbf{b} = A\mathbf{x} \\
\end{align*}
\]

\[\|\mathbf{x}\|_1 = \sum_{i=1}^{n} |x_i|\]
Figure 2: Estimation picture for the lasso (left) and ridge regression (right)

Sufficient Conditions for P1

Theorem (Donoho, Huo)

If \(x \in \mathbb{R}^n \) is a \(k \)-sparse vector such that \(Ax = b \) and

\[
k < \frac{1}{2} \left(1 + \frac{1}{\mu(A)} \right)
\]

or

\[
k < \mu_{1/2}(A)
\]

then \(x \) is the unique solution to \([P1]\) and this solution is identical with the solution to \([P0]\).

Theorem (Strohmer, Heath)

Let \(A \in \mathbb{R}^{m \times n} \) with normalized columns. The mutual coherence must satisfy

\[
\mu(A) \geq \sqrt{\frac{n - m}{m(n - 1)}}.
\]

Note: In the deterministic setting, we must obtain at least \(O(k^2) \) samples.
RIP Conditions

- RIP has been developed for probabilistic argument.

Definition
A matrix $A \in \mathbb{R}^{m \times n}$ is said to have a k-restricted isometry property (RIP) if there is a constant $0 < \delta_k < 1$ such that

$$(1 - \delta_k)\|x\|^2 \leq \|Ax\|^2 \leq (1 + \delta_k)\|x\|^2 \quad [RIP]$$

for every k-sparse vector x.

Theorem (Candes)

If $x \in \mathbb{R}^n$ is a k-sparse vector such that $Ax = b$ and A satisfies the RIP condition with

$$0 < \delta_{2k} < 1$$

then x is the unique solution to $[P0]$.
RIP as Sufficient Condition

Theorem (Candes)

Let $\mathbf{x} \in \mathbb{R}^n$ be a k-sparse vector such that $A\mathbf{x} = \mathbf{b}$. If A satisfies the [RIP] with $\delta_{2k} < \sqrt{2} - 1$ then

- there is a unique k-sparse solution \mathbf{x} consistent with \mathbf{b};
- the problem $[P1]$ has a unique solution;
- the solution to the $[P1]$ is equal to \mathbf{x}.
Suppose that the measurements are corrupted by bounded noise so that

\[\mathbf{b} = A\mathbf{x} + \mathbf{n} \]

where \(\|\mathbf{n}\| \leq \epsilon \). In order to recover \(\mathbf{x} \), we use the modified \(L_1 \)-problem

\[\min \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \|\mathbf{b} - A\mathbf{x}\| \leq \epsilon. \quad [P1'] \]

Theorem (Candes)

Let \(\mathbf{b} \) is the noisy measurements of \(\mathbf{x} \in \mathbb{R}^n \) with noise \(\|\mathbf{n}\| \leq \epsilon \). Let \(\mathbf{x}^k \) denote the best \(k \)-sparse approximation of \(\mathbf{x} \) and \(\mathbf{x}' \) be the solution of \([P1']\). If \(A \) satisfies the RIP with \(\delta_{2k} < \sqrt{2} - 1 \), then

\[\|\mathbf{x} - \mathbf{x}'\| \leq \frac{C_1}{\sqrt{k}} \|\mathbf{x} - \mathbf{x}^k\|_1 + C_2 \epsilon \]

for some constants \(C_1, C_2 > 0 \).
Sparse Recovery Formulations

- **Analysis Formulation**

\[
\begin{align*}
\min_{\mathbf{x}} & \quad \|T\mathbf{x}\|_1 \\
\text{subject to} & \quad \|\mathbf{b} - A\mathbf{x}\| \leq \epsilon
\end{align*}
\]

- **Synthesis Formulation**

\[
\begin{align*}
\min_{\mathbf{\theta}} & \quad \|\mathbf{\theta}\|_1 \\
\text{subject to} & \quad \|\mathbf{b} - A\Psi\mathbf{\theta}\| \leq \epsilon
\end{align*}
\]
Application: Cardiac MRI

- Balanced SSFP

Sequence diagram of b-SSFP

![Sequence diagram of b-SSFP](image)

FLASH

b-SSFP

- Demanding Acquisition Requirements

<table>
<thead>
<tr>
<th>Matrix size</th>
<th>TR (msec)</th>
<th>Views per Segment</th>
<th>Temporal Resolution</th>
<th>Spatial Resolution</th>
<th>Total Acq. time/slice</th>
<th>Total Acq. time/volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x256</td>
<td>4</td>
<td>15</td>
<td>60 msec</td>
<td>2.5mm × 1.4mm</td>
<td>7 sec</td>
<td>56 sec</td>
</tr>
<tr>
<td>196x256</td>
<td>4</td>
<td>15</td>
<td>60 msec</td>
<td>1.3mm × 1.4mm</td>
<td>13 sec</td>
<td>104 sec</td>
</tr>
</tbody>
</table>

An example of Cartesian TrueFISP parameter for cardiac imaging. The acquisition time is calculated based on 60bpm patients with 8 slice acquisition. Flip angle of 40-60° is commonly used.

Aliasing in accelerated Dynamic MRI

Down sampling along k-t space

➔ Aliasing artifact
Classical Methods

• Parallel imaging (SENSE, GRAPPA)
• k-t space method
 – UNFOLD
 – UNFOLD-SMASH, TSENSE
 – K-t BLAST/SENSE
 – PARADISE, PARADIGM

Eight aliased image with different sensitivity

Blaimer et al, Top Magn Reson Imaging • V15, N 4, August 2004
How to Improve Sparsity!!

Cardiac MR

fMRI
RIP in Dynamic MR

\[y = \Lambda x = \Phi \psi x \]

- **k-t space sample**
- **Random phase encoding**
- **Temporal transform**
k-t FOCUSS

(Jung et al, PMB:2007, MRM:2009(a), MRM:2009(b))

k-t FOCUSS (our method)

\[x_{n+1} = x_0 + \Theta_n A^H (A\Theta_n A^H + \lambda I)^{-1}(y - Ax_0) \]

\[\Theta_n = W_n^H W_n = \text{diag}(|x_{n,1}|^{2p}, \cdots, |x_{n,N}|^{2p}), \quad 0.5 \leq p \leq 1 \]

Optimal from compressed sensing perspective

When there is no update, **k-t FOCUSS** is exactly same with **k-t BLAST/SENSE**

k-t BLAST/SENSE (J. Tsao, MRM, 2003)

\[x = \bar{x} + \Theta_0 A^H (A\Theta_0 A^H + \lambda I)^{-1}(y - A\bar{x}) \]

\[\Theta_0 = \text{diag}(|x_{n,1}|^2, \cdots, |x_{n,N}|^2) \]

Does not solve **L1 minimization** problem

Not Optimal from **CS** perspective
11 x accelerated
Zero-padding inverse FFT from measurements

Sampling pattern
11 x accelerated

k-t BLAST

Sampling pattern
11 x accelerated k-t FOCUSS with temporal average

Sampling pattern
MOTION-COMPENSATED COMPRESSED SENSING
Lessons from HDTV History

<table>
<thead>
<tr>
<th>MUSE</th>
<th>MPEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first HDTV (Japan) (obsolete)</td>
<td>Modern Standard (MPEG1,2,4..)</td>
</tr>
<tr>
<td>quincunx sampling</td>
<td>ME/MC</td>
</tr>
</tbody>
</table>

* MUSE: MUltiple Sub-nyquist Encoding systems

Figures from Kovacevic et al, IEEE TIP, 1993

- Lattice sampling theory → Low compression
- ME/MC + residual coding → High compression
MUSE vs k-t MR

<table>
<thead>
<tr>
<th>MUSE</th>
<th>k-t MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first HDTV (Japan) (obsolete)</td>
<td>UNFOLD</td>
</tr>
<tr>
<td>quincunx sampling</td>
<td>k-t BLAST/SENSE</td>
</tr>
<tr>
<td>Lattice sampling theory</td>
<td>k-t space downsampling</td>
</tr>
<tr>
<td>➔ Low compression</td>
<td>➔ Low acceleration !!</td>
</tr>
</tbody>
</table>

Figures from Kovacevic et al, IEEE TIP, 1993

* MUSE: MULTiple Sub-nyquist Encoding systems
Reference is often Free

• Cardiac MR
 – During volume acquisition, diastole phase can be acquired

• fMRI

• MR angiography, vocal tract, etc.
 • example) RIGR, SPEAR, etc.
Random Sampling with Reference

We want to distribute k-space samples to allow prediction and residual coding.

When two reference frames can be obtained,

When one reference frames can be obtained

\[x_0 \]
ME/MC in MPEG Video

Full sampled measurements

Encoder
ME/MC in MPEG Video

Motion Estimation (ME) search area
Matched block: has the smallest MAD
current pixel
block: size N
position: (x, y)

I: reference
P: dynamic frame

Motion vector: (i, j)

[x, y]

[I P P P P P P P I]
ME/MC in MPEG Video

Residual encoding
ME/MC in Dynamic MRI

- Encoder
- Down sampled measurements

ME is not possible!!
Reinable Motion Estimation
Refinable Motion Estimation

Initialization with k-t FOCUSS
Refinable Motion Estimation

Initialization with k-t FOCUSS
Refinable Motion Estimation

Apply ME/MC
Refinable Motion Estimation

Residual Encoding using k-t FOCUSS

\[x_{n+1} = \bar{x} + \Theta_n A^H \left(A\Theta_n A^H + \lambda I \right)^{-1} (y - A\bar{x}) \]
Cine MRI

• Acquisition parameters
 - 1.5 T Philips scanner at Yonsei University Medical Center in Korea
 - bSSFP
 - FOV = 345.00 x 270.00 mm²
 - Matrix size: 256 x 220 (Read-Out x PE)
 - TR = 3.45ms
 - flip angle: 50°
 - heart rate: 66 bpm
 - # of cardiac phases: 25 frames

• Among fully sampled k-data, partial k-data were arbitrarily chosen.
11 x accelerated
Zero-padding inverse FFT from measurements

Sampling pattern
11 x accelerated

k-t BLAST

Sampling pattern
11 x accelerated
k-t FOCUSS

Sampling pattern
Radial Acquisition

iRadon 16 views

Radial k-t FOCUSS with ME/MC from 16 views
World-first In vivo Experiment
(Joint work with K. Nayak at USC)

- Acquisition parameters
 - 3.0 T GE Signa EXCITE at the University of Southern California
 - bSSFP
 - FOV = 300 x 300 mm²
 - Matrix size : 240 x 256 (PE x Read-Out)
 - TR = 3.7ms
 - views per segment = 10
 - flip angle : 45°
 - heart rate : 65 bpm
 - # of cardiac phases : 25 frames
 - acquisition time for 6 x accelerated data = 4 heart beats
 - acquisition time for fully sampled data = 24 heart beats
In Vivo Experiment (6x accel.)

Zero-padding inverse FT from measurements

k-t FOCUSS with ME/MC

full data
Which One Is Optimal?

FT along t-axis
PCA along t-axis
WVT along x-axis + FT along t-axis
KLT (PCA): optimal transform

Karhunen Loeve Transform is well known for an optimal sparsifying transform of general signals.

KLT basis: Matrix of Eigen vectors for XX^T

Considering SVD

$X = U \Sigma V^T$

$\Sigma = \begin{pmatrix} L & 0 \\ 0 & s \end{pmatrix}$

L: Large Singular values
s: small Singular values
$L >> s \rightarrow 0$

Hence, KLT

$U^T X = \Sigma V^T$

is SPARSE
PCA in k-t FOCUSS

\[x_{n+1} = x_0 + \Theta_n A^H (A\Theta_n A^H + \lambda I)^{-1} (y - Ax_0) \]

Random phase encoding

k-t space sample

Temporal transform

Significant eigenvector

\[y = Ax = \Phi \Psi x \]
Two step Boosting for PCA basis
MR Angiography

Golden Section Radial Trajectory

Target time points: 39, 79, 118, 157, 197, 236, 275, 314, 354, 393, 432, 472

Measurement size (512 read-out x 512 views) vs Total recon matrix (512 x 512 x 12 time frames)

12 x acceleration !!
KLT for CE-MRA

k-t FOCUSS recon using FFT

Summation along t-axis

Thresholding
2009 ISMRM Recon Challenge Award

L2 minimization k-t FOCUSS using KLT
T2 Parameter Mapping

(joint work D. Kim, NYU: Feng et al, MRM, 2011)

\[M_{xy}(t) = M_{xy}(0)e^{-t/T_2} \]

Detect T2 changes due to variety of disease
Cardiac T2 Mapping

6 x accel. Conventional method 6 x accel. k-t FOCUSS
Cardiac T2 Mapping

1.8 x accel. GRAPPA 6 x accel. k-t FOCUSS
T2 Estimation

\[S(t) = \left(S_{ideal}^2 + \sigma^2 \right)^{1/2} \quad S_{ideal} \equiv S_0 e^{-t/T_2} \]
MULTIPLE MEASUREMENT VECTOR
COMPRESSED SENSING
MMV: Multiple Measurement Vector Problems

minimize $\|X\|_0$ subject to $B = AX$.

$k = \|X\|_0$: number of nonzero rows
$r :$ number of snapshots
$m :$ number of sensor elements

Here, we assume that the columns of B are linearly independent.
Inverse Scattering Problems

Geophysical
- Electromagnetic
- Acoustic

Medical
- Ultrasonic
- Optical

Industrial
- Electromagnetic
- Ultrasonic
- Optical

Slide courtesy by Devaney
Diffuse Optical Tomography

Near-infrared (NIR, ~650-950 nm)

* Durduan et al., MICCAI, 2010
Elastic Source Imaging

Elastography: Medical, geophysical applications

https://iame.com/online/breast_elastography/

https://marcellusdrilling.com/2018/04/9-more-seismic-testing-devices-stolen-in-swpa-6-were-returned/
Multiple Measurement Vectors from Multiple illumination Patterns

Finite # of snapshots are available
Sparse Signal \rightarrow \text{Perturbations in the optical parameters}

Angiogenesis in cancer
Inverse Scattering Problems

\[\psi^{(in)}(r; s_0) = e^{ik s_0 \cdot r} \]

\[\psi = \psi^{(in)} + \psi^{(s)} \]

Existing methods

- Born approximation \(\rightarrow \) linearization error
- Iterative Born approximation \(\rightarrow \) computationally expensive
Overcoming Nonlinearities using Joint Sparsity

\[u^S_m(x) = -\frac{1}{D_0} \int_{\bigcup_{n=1}^N \Omega_n} G^{x_0}(x, y) u^t_m(y) f(y) dy, \]
L₀ Uniqueness of MMV

Definition

Given a matrix A, let $\text{spark}(A)$ denote the smallest number of linearly dependent columns of A.

Theorem (Rao / Chen, Huo / Feng, Bresler / Davies, Eldar)

If a matrix X satisfies $AX = B$, then

$$
\|X\|_0 < \frac{\text{spark}(A) + \text{rank}(B) - 1}{2}
$$

if and only if X is the unique solution to the l_0 minimization problem.

With increasing number of snapshots, more non-zero elements can be recovered.
Spark Reduction Principle

Theorem

Let \(r \leq m < n \). Suppose that we are given a sensing matrix \(A \in \mathbb{R}^{m \times n} \) and an observation matrix \(B \in \mathbb{R}^{m \times r} \). If the \(k \) nonzero rows of \(X \) are in general position (i.e., any collection of \(r \) nonzero rows are linearly independent) and \(A \) satisfies the RIP condition \(0 \leq \delta_{2k-r+1}^{L}(A) < 1 \), then

\[
\text{spark}(Q^*A) = k - r + 1.
\]

Note that \(A \in \mathbb{R}^{m \times n} \) satisfies RIP with \(0 \leq \delta_{2k-r+1}^{L}(A) < 1 \) if and only if

\[
k < \frac{\text{spark}(A) + \text{rank}(B) - 1}{2}.
\]

: \(l_0 \) bound for MMV problem

CS-MUSIC achieves \(l_0 \) bound with finite snapshot.
Theorem

Assume that we have an MMV problem $AX = B$, where A, X and B as in the previous theorem. If $I_{k-r} \subset \text{supp}X$ with $|I_{k-r}| = k - r$ and $A_{I_{k-r}} \in \mathbb{R}^{m \times (k-r)}$ which consists of columns of A, whose indices are in I_{k-r}, then for any $j \in \{1, \cdots, n\} \setminus I_{k-r}$,

$$a_j^* \left[P_R(Q) - P_R(P_R(Q)A_{I_{k-r}}) \right] a_j = 0 \iff j \in \text{supp}X.$$

$$a_j^* P_{[A_{I_{k-r}}B]} a_j = 0 \iff j \in \text{supp}X.$$

Augmented Signal Subspace: $R[A_{I_{k-r}}B]$
Geometric Interpretation

\[R(P_{R(Q)} - P_{R(QQ^*A_{I_{k-r}})}) \]

(noise subspace for generalized MUSIC)

\[R(Q) \]

(noise subspace for MUSIC)

\[R(QQ^*A_{I_{k-r}}) \]

\[R(B) \]

(signal subspace)

\[a_j \quad (j \in S) \]

\[R(A_S) \]

\[R(A_{I_{k-r}}) \]
Sampling Rate for MMV

Case 1: r is a fixed number

Theorem

Let $\frac{\sigma_k([A_{k-r} S])}{\Delta} > 1 + \frac{k}{r}$. If we have

$$m > \frac{1 + \delta}{1 - 2\frac{k}{r} \eta_{k-r}} \frac{2k \log (n - k)}{r},$$

then we can find $k - r$ correct indices of $\text{supp} \ X$ by applying subspace S-OMP.

1. [Fletcher, Rangan] For SMV, when $\text{SNR} \to \infty$, we need $m > 2(1 + \delta) k \log (n - k)$ for some $\delta > 0$.

2. The sampling ratio is reciprocally proportional with respect to the number of multiple measurement vectors.

3. $\text{SNR} \to \infty$ is required, in the large system limit. (Similar to Reeves and Gaspar)
Sampling Rate for MMV

Case 2: $\alpha := \lim_{n \to \infty} \frac{r(n)}{k(n)} > 0$

Theorem

Let $\frac{\sigma_k([A_{I_{k-r}} S])}{\Delta} > 1 + \alpha$ Then if we have

$$m > (1 + \delta)^2 \frac{k}{1 - 2^{\frac{\eta_{k-r}}{\alpha}}} [2 - F(\alpha)]^2,$$

for some $\delta > 0$ where $F(\alpha)$ is an increasing function on $[0, 1]$ such that $F(1) = 1$ and $\lim_{\alpha \to 0+} F(\alpha) = 0$. Then we can find $k - r$ correct indices of suppX by applying subspace S-OMP.

1. If $\alpha \to 1$ and SNR $\to \infty$, then we only need to have $m > (1 + \delta)k$ for a small $\delta > 0$. (cf. MUSIC)
2. In this case, the required number of sensor elements is at most $4(1 + \delta)k$ when SNR$\to \infty$ (No log n factor).
3. The required SNR is finite.
MMV for Bio-medical Imaging

- Parallel MRI + CS
- EEG/MEG
- Diffuse optical tomography
- Wave inverse scattering
ODT under Born/Rytov Approximation

Sample

x(y)

Scattered field 1

Scattered field 2

Z

2-D Fourier transform and scaling

3d k-space

k_x

k_y

(a)

k_x/\lambda

k_y/\lambda

(b)

k_x

k_y

(c)
ODT using Joint Sparsity

Lippman-Schwinger equation

\[U_s(r) = \tau K_D[U](r) := \tau \int_D k^2 f(r') G(r,r') U(r') dr', \quad r \in \Omega, \]

MMV for Support & Induced Current Recovery

\[
\begin{align*}
U_{s}^{(m)}(r) &= \tau k^2 \int_D G(r,r') I^{(m)}(r') dr', \quad r \in \Gamma, \\
I^{(m)}(r) &= f(r) U^{(m)}(r), \quad m = 1, \ldots, M, \\
\min_I \|I\|_0, \quad \text{subject to } \|Y - G \cdot I\|_F \leq \epsilon.
\end{align*}
\]
ODT using Joint Sparsity

Unknown Total Field Estimation

\[\hat{U}(r) = U_0(r) + \tau \kappa^2 \int_D G(r, r') \hat{I}(r') \, dr', \quad r \in D, \]

Abnormality Estimation

\[U_s(r) = \tau \kappa^2 \int_D G(r, r') \hat{U}(r') f(r') \, dr', \quad r \in \Gamma. \]
Super-Resolution from Joint Sparse Recovery

(Lim et al, OPEX, 2017)

\[u_s(r) = \sum_i a_i (1/\tau' - K_{D'})^{-1} K_{D'} [\phi_i](r) = \sum_i a_i \frac{\lambda_i}{1/\tau' - \lambda_i} \phi_i(r), \quad r \in D', \]
Super-Resolution from Joint Sparse Recovery
(Lim et al, OPEX, 2017)
Super-Resolution from Joint Sparse Recovery
(Lim et al, OPEX, 2017)
Diffuse Optical Tomography Applications

(Lee, OPEX, 2013)

- Line source shifting with 2 mm space
- 30 mm
- 20 x 20 point detectors (1.5 mm pitch)
- 22 mm
- 38 mm

<table>
<thead>
<tr>
<th>Optical parameters in mm$^{-1}$</th>
<th>$\delta \mu_a$</th>
<th>$\delta \mu'_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 1</td>
<td>0.0504</td>
<td>0.8444</td>
</tr>
<tr>
<td>Target 2</td>
<td>0.0423</td>
<td>0.0</td>
</tr>
<tr>
<td>Target 3</td>
<td>0.0</td>
<td>0.8619</td>
</tr>
</tbody>
</table>
Diffuse Optical Tomography Applications

(Lee, OPEX, 2013)
Summary: Part I

- Sparsity principle is very important for biomedical image reconstruction
- Compressed sensing has many extensions
 - Compressed sensing
 - Motion compensated CS
 - Learning-based CS
 - MMV CS
- Downside: suffers from discretization, RIP, optimization bottleneck
References: Part I

• Jung, H., Park, J., Yoo, J., & Ye, J. C. (2010). Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magnetic Resonance in Medicine, 63(1), 68-7
References: Part I

Min, J., Jang, J., Keum, D., Ryu, S. W., Choi, C., Jeong, K. H., & Ye, J. C. (2013). Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery. Scientific Reports, 3(2075)

References: Part I

References: Part I

References: Part I

